summaryrefslogtreecommitdiff
path: root/drivers/media/tuners/mt2266.c
blob: 6136f20fa9b7f61d7cefb083e71a5f48bc87fc04 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Driver for Microtune MT2266 "Direct conversion low power broadband tuner"
 *
 *  Copyright (c) 2007 Olivier DANET <odanet@caramail.com>
 */

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <linux/slab.h>

#include <media/dvb_frontend.h>
#include "mt2266.h"

#define I2C_ADDRESS 0x60

#define REG_PART_REV   0
#define REG_TUNE       1
#define REG_BAND       6
#define REG_BANDWIDTH  8
#define REG_LOCK       0x12

#define PART_REV 0x85

struct mt2266_priv {
	struct mt2266_config *cfg;
	struct i2c_adapter   *i2c;

	u32 frequency;
	u32 bandwidth;
	u8 band;
};

#define MT2266_VHF 1
#define MT2266_UHF 0

/* Here, frequencies are expressed in kiloHertz to avoid 32 bits overflows */

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2266: " args); printk("\n"); }} while (0)

// Reads a single register
static int mt2266_readreg(struct mt2266_priv *priv, u8 reg, u8 *val)
{
	struct i2c_msg msg[2] = {
		{ .addr = priv->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },
		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val,  .len = 1 },
	};
	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
		printk(KERN_WARNING "MT2266 I2C read failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

// Writes a single register
static int mt2266_writereg(struct mt2266_priv *priv, u8 reg, u8 val)
{
	u8 buf[2] = { reg, val };
	struct i2c_msg msg = {
		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
	};
	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "MT2266 I2C write failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

// Writes a set of consecutive registers
static int mt2266_writeregs(struct mt2266_priv *priv,u8 *buf, u8 len)
{
	struct i2c_msg msg = {
		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
	};
	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "MT2266 I2C write failed (len=%i)\n",(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

// Initialisation sequences
static u8 mt2266_init1[] = { REG_TUNE, 0x00, 0x00, 0x28,
				 0x00, 0x52, 0x99, 0x3f };

static u8 mt2266_init2[] = {
    0x17, 0x6d, 0x71, 0x61, 0xc0, 0xbf, 0xff, 0xdc, 0x00, 0x0a, 0xd4,
    0x03, 0x64, 0x64, 0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14,
    0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x7f, 0x5e, 0x3f, 0xff, 0xff,
    0xff, 0x00, 0x77, 0x0f, 0x2d
};

static u8 mt2266_init_8mhz[] = { REG_BANDWIDTH, 0x22, 0x22, 0x22, 0x22,
						0x22, 0x22, 0x22, 0x22 };

static u8 mt2266_init_7mhz[] = { REG_BANDWIDTH, 0x32, 0x32, 0x32, 0x32,
						0x32, 0x32, 0x32, 0x32 };

static u8 mt2266_init_6mhz[] = { REG_BANDWIDTH, 0xa7, 0xa7, 0xa7, 0xa7,
						0xa7, 0xa7, 0xa7, 0xa7 };

static u8 mt2266_uhf[] = { 0x1d, 0xdc, 0x00, 0x0a, 0xd4, 0x03, 0x64, 0x64,
			   0x64, 0x64, 0x22, 0xaa, 0xf2, 0x1e, 0x80, 0x14 };

static u8 mt2266_vhf[] = { 0x1d, 0xfe, 0x00, 0x00, 0xb4, 0x03, 0xa5, 0xa5,
			   0xa5, 0xa5, 0x82, 0xaa, 0xf1, 0x17, 0x80, 0x1f };

#define FREF 30000       // Quartz oscillator 30 MHz

static int mt2266_set_params(struct dvb_frontend *fe)
{
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
	struct mt2266_priv *priv;
	int ret=0;
	u32 freq;
	u32 tune;
	u8  lnaband;
	u8  b[10];
	int i;
	u8 band;

	priv = fe->tuner_priv;

	freq = priv->frequency / 1000; /* Hz -> kHz */
	if (freq < 470000 && freq > 230000)
		return -EINVAL; /* Gap between VHF and UHF bands */

	priv->frequency = c->frequency;
	tune = 2 * freq * (8192/16) / (FREF/16);
	band = (freq < 300000) ? MT2266_VHF : MT2266_UHF;
	if (band == MT2266_VHF)
		tune *= 2;

	switch (c->bandwidth_hz) {
	case 6000000:
		mt2266_writeregs(priv, mt2266_init_6mhz,
				 sizeof(mt2266_init_6mhz));
		break;
	case 8000000:
		mt2266_writeregs(priv, mt2266_init_8mhz,
				 sizeof(mt2266_init_8mhz));
		break;
	case 7000000:
	default:
		mt2266_writeregs(priv, mt2266_init_7mhz,
				 sizeof(mt2266_init_7mhz));
		break;
	}
	priv->bandwidth = c->bandwidth_hz;

	if (band == MT2266_VHF && priv->band == MT2266_UHF) {
		dprintk("Switch from UHF to VHF");
		mt2266_writereg(priv, 0x05, 0x04);
		mt2266_writereg(priv, 0x19, 0x61);
		mt2266_writeregs(priv, mt2266_vhf, sizeof(mt2266_vhf));
	} else if (band == MT2266_UHF && priv->band == MT2266_VHF) {
		dprintk("Switch from VHF to UHF");
		mt2266_writereg(priv, 0x05, 0x52);
		mt2266_writereg(priv, 0x19, 0x61);
		mt2266_writeregs(priv, mt2266_uhf, sizeof(mt2266_uhf));
	}
	msleep(10);

	if (freq <= 495000)
		lnaband = 0xEE;
	else if (freq <= 525000)
		lnaband = 0xDD;
	else if (freq <= 550000)
		lnaband = 0xCC;
	else if (freq <= 580000)
		lnaband = 0xBB;
	else if (freq <= 605000)
		lnaband = 0xAA;
	else if (freq <= 630000)
		lnaband = 0x99;
	else if (freq <= 655000)
		lnaband = 0x88;
	else if (freq <= 685000)
		lnaband = 0x77;
	else if (freq <= 710000)
		lnaband = 0x66;
	else if (freq <= 735000)
		lnaband = 0x55;
	else if (freq <= 765000)
		lnaband = 0x44;
	else if (freq <= 802000)
		lnaband = 0x33;
	else if (freq <= 840000)
		lnaband = 0x22;
	else
		lnaband = 0x11;

	b[0] = REG_TUNE;
	b[1] = (tune >> 8) & 0x1F;
	b[2] = tune & 0xFF;
	b[3] = tune >> 13;
	mt2266_writeregs(priv,b,4);

	dprintk("set_parms: tune=%d band=%d %s",
		(int) tune, (int) lnaband,
		(band == MT2266_UHF) ? "UHF" : "VHF");
	dprintk("set_parms: [1..3]: %2x %2x %2x",
		(int) b[1], (int) b[2], (int)b[3]);

	if (band == MT2266_UHF) {
		b[0] = 0x05;
		b[1] = (priv->band == MT2266_VHF) ? 0x52 : 0x62;
		b[2] = lnaband;
		mt2266_writeregs(priv, b, 3);
	}

	/* Wait for pll lock or timeout */
	i = 0;
	do {
		mt2266_readreg(priv,REG_LOCK,b);
		if (b[0] & 0x40)
			break;
		msleep(10);
		i++;
	} while (i<10);
	dprintk("Lock when i=%i",(int)i);

	if (band == MT2266_UHF && priv->band == MT2266_VHF)
		mt2266_writereg(priv, 0x05, 0x62);

	priv->band = band;

	return ret;
}

static void mt2266_calibrate(struct mt2266_priv *priv)
{
	mt2266_writereg(priv, 0x11, 0x03);
	mt2266_writereg(priv, 0x11, 0x01);
	mt2266_writeregs(priv, mt2266_init1, sizeof(mt2266_init1));
	mt2266_writeregs(priv, mt2266_init2, sizeof(mt2266_init2));
	mt2266_writereg(priv, 0x33, 0x5e);
	mt2266_writereg(priv, 0x10, 0x10);
	mt2266_writereg(priv, 0x10, 0x00);
	mt2266_writeregs(priv, mt2266_init_8mhz, sizeof(mt2266_init_8mhz));
	msleep(25);
	mt2266_writereg(priv, 0x17, 0x6d);
	mt2266_writereg(priv, 0x1c, 0x00);
	msleep(75);
	mt2266_writereg(priv, 0x17, 0x6d);
	mt2266_writereg(priv, 0x1c, 0xff);
}

static int mt2266_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct mt2266_priv *priv = fe->tuner_priv;
	*frequency = priv->frequency;
	return 0;
}

static int mt2266_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
	struct mt2266_priv *priv = fe->tuner_priv;
	*bandwidth = priv->bandwidth;
	return 0;
}

static int mt2266_init(struct dvb_frontend *fe)
{
	int ret;
	struct mt2266_priv *priv = fe->tuner_priv;
	ret = mt2266_writereg(priv, 0x17, 0x6d);
	if (ret < 0)
		return ret;
	ret = mt2266_writereg(priv, 0x1c, 0xff);
	if (ret < 0)
		return ret;
	return 0;
}

static int mt2266_sleep(struct dvb_frontend *fe)
{
	struct mt2266_priv *priv = fe->tuner_priv;
	mt2266_writereg(priv, 0x17, 0x6d);
	mt2266_writereg(priv, 0x1c, 0x00);
	return 0;
}

static void mt2266_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
}

static const struct dvb_tuner_ops mt2266_tuner_ops = {
	.info = {
		.name              = "Microtune MT2266",
		.frequency_min_hz  = 174 * MHz,
		.frequency_max_hz  = 862 * MHz,
		.frequency_step_hz =  50 * kHz,
	},
	.release       = mt2266_release,
	.init          = mt2266_init,
	.sleep         = mt2266_sleep,
	.set_params    = mt2266_set_params,
	.get_frequency = mt2266_get_frequency,
	.get_bandwidth = mt2266_get_bandwidth
};

struct dvb_frontend * mt2266_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2266_config *cfg)
{
	struct mt2266_priv *priv = NULL;
	u8 id = 0;

	priv = kzalloc(sizeof(struct mt2266_priv), GFP_KERNEL);
	if (priv == NULL)
		return NULL;

	priv->cfg      = cfg;
	priv->i2c      = i2c;
	priv->band     = MT2266_UHF;

	if (mt2266_readreg(priv, 0, &id)) {
		kfree(priv);
		return NULL;
	}
	if (id != PART_REV) {
		kfree(priv);
		return NULL;
	}
	printk(KERN_INFO "MT2266: successfully identified\n");
	memcpy(&fe->ops.tuner_ops, &mt2266_tuner_ops, sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;
	mt2266_calibrate(priv);
	return fe;
}
EXPORT_SYMBOL(mt2266_attach);

MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2266 silicon tuner driver");
MODULE_LICENSE("GPL");