summaryrefslogtreecommitdiff
path: root/drivers/media/rc/nuvoton-cir.c
blob: d4d64492a05713d3c19998029983ef76c092ae06 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
/*
 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
 *
 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
 * Copyright (C) 2009 Nuvoton PS Team
 *
 * Special thanks to Nuvoton for providing hardware, spec sheets and
 * sample code upon which portions of this driver are based. Indirect
 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
 * modeled after.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
 * USA
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <media/rc-core.h>
#include <linux/pci_ids.h>

#include "nuvoton-cir.h"

static char *chip_id = "w836x7hg";

/* write val to config reg */
static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
{
	outb(reg, nvt->cr_efir);
	outb(val, nvt->cr_efdr);
}

/* read val from config reg */
static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
{
	outb(reg, nvt->cr_efir);
	return inb(nvt->cr_efdr);
}

/* update config register bit without changing other bits */
static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
	u8 tmp = nvt_cr_read(nvt, reg) | val;
	nvt_cr_write(nvt, tmp, reg);
}

/* clear config register bit without changing other bits */
static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
	nvt_cr_write(nvt, tmp, reg);
}

/* enter extended function mode */
static inline void nvt_efm_enable(struct nvt_dev *nvt)
{
	/* Enabling Extended Function Mode explicitly requires writing 2x */
	outb(EFER_EFM_ENABLE, nvt->cr_efir);
	outb(EFER_EFM_ENABLE, nvt->cr_efir);
}

/* exit extended function mode */
static inline void nvt_efm_disable(struct nvt_dev *nvt)
{
	outb(EFER_EFM_DISABLE, nvt->cr_efir);
}

/*
 * When you want to address a specific logical device, write its logical
 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
 */
static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
{
	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
	outb(ldev, nvt->cr_efdr);
}

/* write val to cir config register */
static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
{
	outb(val, nvt->cir_addr + offset);
}

/* read val from cir config register */
static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
{
	u8 val;

	val = inb(nvt->cir_addr + offset);

	return val;
}

/* write val to cir wake register */
static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
					  u8 val, u8 offset)
{
	outb(val, nvt->cir_wake_addr + offset);
}

/* read val from cir wake config register */
static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
{
	u8 val;

	val = inb(nvt->cir_wake_addr + offset);

	return val;
}

#define pr_reg(text, ...) \
	printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)

/* dump current cir register contents */
static void cir_dump_regs(struct nvt_dev *nvt)
{
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);

	pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
	pr_reg(" * CR CIR ACTIVE :   0x%x\n",
	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
	pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
	pr_reg(" * CR CIR IRQ NUM:   0x%x\n",
	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));

	nvt_efm_disable(nvt);

	pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
	pr_reg(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
	pr_reg(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
	pr_reg(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
	pr_reg(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
	pr_reg(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
	pr_reg(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
	pr_reg(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
	pr_reg(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
	pr_reg(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
	pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
	pr_reg(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
	pr_reg(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
	pr_reg(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
	pr_reg(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
	pr_reg(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
	pr_reg(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
}

/* dump current cir wake register contents */
static void cir_wake_dump_regs(struct nvt_dev *nvt)
{
	u8 i, fifo_len;

	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);

	pr_reg("%s: Dump CIR WAKE logical device registers:\n",
	       NVT_DRIVER_NAME);
	pr_reg(" * CR CIR WAKE ACTIVE :   0x%x\n",
	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
	pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
	pr_reg(" * CR CIR WAKE IRQ NUM:   0x%x\n",
	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));

	nvt_efm_disable(nvt);

	pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
	pr_reg(" * IRCON:          0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
	pr_reg(" * IRSTS:          0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
	pr_reg(" * IREN:           0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
	pr_reg(" * FIFO CMP DEEP:  0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
	pr_reg(" * FIFO CMP TOL:   0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
	pr_reg(" * FIFO COUNT:     0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
	pr_reg(" * SLCH:           0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
	pr_reg(" * SLCL:           0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
	pr_reg(" * FIFOCON:        0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
	pr_reg(" * SRXFSTS:        0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
	pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
	pr_reg(" * WR FIFO DATA:   0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
	pr_reg(" * RD FIFO ONLY:   0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
	pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
	pr_reg(" * FIFO IGNORE:    0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
	pr_reg(" * IRFSM:          0x%x\n",
	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));

	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
	pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
	pr_reg("* Contents = ");
	for (i = 0; i < fifo_len; i++)
		printk(KERN_CONT "%02x ",
		       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
	printk(KERN_CONT "\n");
}

/* detect hardware features */
static int nvt_hw_detect(struct nvt_dev *nvt)
{
	unsigned long flags;
	u8 chip_major, chip_minor;
	int ret = 0;

	nvt_efm_enable(nvt);

	/* Check if we're wired for the alternate EFER setup */
	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
	if (chip_major == 0xff) {
		nvt->cr_efir = CR_EFIR2;
		nvt->cr_efdr = CR_EFDR2;
		nvt_efm_enable(nvt);
		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
	}

	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
	nvt_dbg("%s: chip id: 0x%02x 0x%02x", chip_id, chip_major, chip_minor);

	if (chip_major != CHIP_ID_HIGH ||
	    (chip_minor != CHIP_ID_LOW && chip_minor != CHIP_ID_LOW2)) {
		nvt_pr(KERN_ERR, "%s: unsupported chip, id: 0x%02x 0x%02x",
		       chip_id, chip_major, chip_minor);
		ret = -ENODEV;
	}

	nvt_efm_disable(nvt);

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt->chip_major = chip_major;
	nvt->chip_minor = chip_minor;
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	return ret;
}

static void nvt_cir_ldev_init(struct nvt_dev *nvt)
{
	u8 val;

	/* output pin selection (Pin95=CIRRX, Pin96=CIRTX1, WB enabled */
	val = nvt_cr_read(nvt, CR_OUTPUT_PIN_SEL);
	val &= OUTPUT_PIN_SEL_MASK;
	val |= (OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB);
	nvt_cr_write(nvt, val, CR_OUTPUT_PIN_SEL);

	/* Select CIR logical device and enable */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);

	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);

	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
		nvt->cir_addr, nvt->cir_irq);
}

static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
{
	/* Select ACPI logical device, enable it and CIR Wake */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	/* Enable CIR Wake via PSOUT# (Pin60) */
	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);

	/* enable cir interrupt of mouse/keyboard IRQ event */
	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);

	/* enable pme interrupt of cir wakeup event */
	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);

	/* Select CIR Wake logical device and enable */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);

	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);

	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
		nvt->cir_wake_addr, nvt->cir_wake_irq);
}

/* clear out the hardware's cir rx fifo */
static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
}

/* clear out the hardware's cir wake rx fifo */
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
			       CIR_WAKE_FIFOCON);
}

/* clear out the hardware's cir tx fifo */
static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
}

/* enable RX Trigger Level Reach and Packet End interrupts */
static void nvt_set_cir_iren(struct nvt_dev *nvt)
{
	u8 iren;

	iren = CIR_IREN_RTR | CIR_IREN_PE;
	nvt_cir_reg_write(nvt, iren, CIR_IREN);
}

static void nvt_cir_regs_init(struct nvt_dev *nvt)
{
	/* set sample limit count (PE interrupt raised when reached) */
	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);

	/* set fifo irq trigger levels */
	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);

	/*
	 * Enable TX and RX, specify carrier on = low, off = high, and set
	 * sample period (currently 50us)
	 */
	nvt_cir_reg_write(nvt,
			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
			  CIR_IRCON);

	/* clear hardware rx and tx fifos */
	nvt_clear_cir_fifo(nvt);
	nvt_clear_tx_fifo(nvt);

	/* clear any and all stray interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* and finally, enable interrupts */
	nvt_set_cir_iren(nvt);
}

static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
{
	/* set number of bytes needed for wake from s3 (default 65) */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
			       CIR_WAKE_FIFO_CMP_DEEP);

	/* set tolerance/variance allowed per byte during wake compare */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
			       CIR_WAKE_FIFO_CMP_TOL);

	/* set sample limit count (PE interrupt raised when reached) */
	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);

	/* set cir wake fifo rx trigger level (currently 67) */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
			       CIR_WAKE_FIFOCON);

	/*
	 * Enable TX and RX, specific carrier on = low, off = high, and set
	 * sample period (currently 50us)
	 */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
			       CIR_WAKE_IRCON);

	/* clear cir wake rx fifo */
	nvt_clear_cir_wake_fifo(nvt);

	/* clear any and all stray interrupts */
	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
}

static void nvt_enable_wake(struct nvt_dev *nvt)
{
	nvt_efm_enable(nvt);

	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);

	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
			       CIR_WAKE_IRCON);
	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
}

/* rx carrier detect only works in learning mode, must be called w/nvt_lock */
static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
{
	u32 count, carrier, duration = 0;
	int i;

	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;

	for (i = 0; i < nvt->pkts; i++) {
		if (nvt->buf[i] & BUF_PULSE_BIT)
			duration += nvt->buf[i] & BUF_LEN_MASK;
	}

	duration *= SAMPLE_PERIOD;

	if (!count || !duration) {
		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
		       count, duration);
		return 0;
	}

	carrier = MS_TO_NS(count) / duration;

	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
		nvt_dbg("WTF? Carrier frequency out of range!");

	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
		carrier, count, duration);

	return carrier;
}

/*
 * set carrier frequency
 *
 * set carrier on 2 registers: CP & CC
 * always set CP as 0x81
 * set CC by SPEC, CC = 3MHz/carrier - 1
 */
static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
{
	struct nvt_dev *nvt = dev->priv;
	u16 val;

	nvt_cir_reg_write(nvt, 1, CIR_CP);
	val = 3000000 / (carrier) - 1;
	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);

	nvt_dbg("cp: 0x%x cc: 0x%x\n",
		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));

	return 0;
}

/*
 * nvt_tx_ir
 *
 * 1) clean TX fifo first (handled by AP)
 * 2) copy data from user space
 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
 * 4) send 9 packets to TX FIFO to open TTR
 * in interrupt_handler:
 * 5) send all data out
 * go back to write():
 * 6) disable TX interrupts, re-enable RX interupts
 *
 * The key problem of this function is user space data may larger than
 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
 * set TXFCONT as 0xff, until buf_count less than 0xff.
 */
static int nvt_tx_ir(struct rc_dev *dev, int *txbuf, u32 n)
{
	struct nvt_dev *nvt = dev->priv;
	unsigned long flags;
	size_t cur_count;
	unsigned int i;
	u8 iren;
	int ret;

	spin_lock_irqsave(&nvt->tx.lock, flags);

	if (n >= TX_BUF_LEN) {
		nvt->tx.buf_count = cur_count = TX_BUF_LEN;
		ret = TX_BUF_LEN;
	} else {
		nvt->tx.buf_count = cur_count = n;
		ret = n;
	}

	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);

	nvt->tx.cur_buf_num = 0;

	/* save currently enabled interrupts */
	iren = nvt_cir_reg_read(nvt, CIR_IREN);

	/* now disable all interrupts, save TFU & TTR */
	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);

	nvt->tx.tx_state = ST_TX_REPLY;

	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);

	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
	for (i = 0; i < 9; i++)
		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);

	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);

	spin_lock_irqsave(&nvt->tx.lock, flags);
	nvt->tx.tx_state = ST_TX_NONE;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	/* restore enabled interrupts to prior state */
	nvt_cir_reg_write(nvt, iren, CIR_IREN);

	return ret;
}

/* dump contents of the last rx buffer we got from the hw rx fifo */
static void nvt_dump_rx_buf(struct nvt_dev *nvt)
{
	int i;

	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
	printk(KERN_CONT "\n");
}

/*
 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
 * trigger decode when appropriate.
 *
 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
 * (default 50us) intervals for that pulse/space. A discrete signal is
 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
 * to signal more IR coming (repeats) or end of IR, respectively. We store
 * sample data in the raw event kfifo until we see 0x7<something> (except f)
 * or 0x80, at which time, we trigger a decode operation.
 */
static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
{
	DEFINE_IR_RAW_EVENT(rawir);
	unsigned int count;
	u32 carrier;
	u8 sample;
	int i;

	nvt_dbg_verbose("%s firing", __func__);

	if (debug)
		nvt_dump_rx_buf(nvt);

	if (nvt->carrier_detect_enabled)
		carrier = nvt_rx_carrier_detect(nvt);

	count = nvt->pkts;
	nvt_dbg_verbose("Processing buffer of len %d", count);

	init_ir_raw_event(&rawir);

	for (i = 0; i < count; i++) {
		nvt->pkts--;
		sample = nvt->buf[i];

		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
					  * SAMPLE_PERIOD);

		if ((sample & BUF_LEN_MASK) == BUF_LEN_MASK) {
			if (nvt->rawir.pulse == rawir.pulse)
				nvt->rawir.duration += rawir.duration;
			else {
				nvt->rawir.duration = rawir.duration;
				nvt->rawir.pulse = rawir.pulse;
			}
			continue;
		}

		rawir.duration += nvt->rawir.duration;

		init_ir_raw_event(&nvt->rawir);
		nvt->rawir.duration = 0;
		nvt->rawir.pulse = rawir.pulse;

		if (sample == BUF_PULSE_BIT)
			rawir.pulse = false;

		if (rawir.duration) {
			nvt_dbg("Storing %s with duration %d",
				rawir.pulse ? "pulse" : "space",
				rawir.duration);

			ir_raw_event_store(nvt->rdev, &rawir);
		}

		/*
		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
		 * indicates end of IR signal, but new data incoming. In both
		 * cases, it means we're ready to call ir_raw_event_handle
		 */
		if ((sample == BUF_PULSE_BIT) && nvt->pkts) {
			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
			ir_raw_event_handle(nvt->rdev);
		}
	}

	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
	ir_raw_event_handle(nvt->rdev);

	if (nvt->pkts) {
		nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt->pkts);
		nvt->pkts = 0;
	}

	nvt_dbg_verbose("%s done", __func__);
}

static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
{
	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");

	nvt->pkts = 0;
	nvt_clear_cir_fifo(nvt);
	ir_raw_event_reset(nvt->rdev);
}

/* copy data from hardware rx fifo into driver buffer */
static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
{
	unsigned long flags;
	u8 fifocount, val;
	unsigned int b_idx;
	bool overrun = false;
	int i;

	/* Get count of how many bytes to read from RX FIFO */
	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
	/* if we get 0xff, probably means the logical dev is disabled */
	if (fifocount == 0xff)
		return;
	/* watch out for a fifo overrun condition */
	else if (fifocount > RX_BUF_LEN) {
		overrun = true;
		fifocount = RX_BUF_LEN;
	}

	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);

	spin_lock_irqsave(&nvt->nvt_lock, flags);

	b_idx = nvt->pkts;

	/* This should never happen, but lets check anyway... */
	if (b_idx + fifocount > RX_BUF_LEN) {
		nvt_process_rx_ir_data(nvt);
		b_idx = 0;
	}

	/* Read fifocount bytes from CIR Sample RX FIFO register */
	for (i = 0; i < fifocount; i++) {
		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
		nvt->buf[b_idx + i] = val;
	}

	nvt->pkts += fifocount;
	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);

	nvt_process_rx_ir_data(nvt);

	if (overrun)
		nvt_handle_rx_fifo_overrun(nvt);

	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}

static void nvt_cir_log_irqs(u8 status, u8 iren)
{
	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
		status, iren,
		status & CIR_IRSTS_RDR	? " RDR"	: "",
		status & CIR_IRSTS_RTR	? " RTR"	: "",
		status & CIR_IRSTS_PE	? " PE"		: "",
		status & CIR_IRSTS_RFO	? " RFO"	: "",
		status & CIR_IRSTS_TE	? " TE"		: "",
		status & CIR_IRSTS_TTR	? " TTR"	: "",
		status & CIR_IRSTS_TFU	? " TFU"	: "",
		status & CIR_IRSTS_GH	? " GH"		: "",
		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
}

static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
{
	unsigned long flags;
	bool tx_inactive;
	u8 tx_state;

	spin_lock_irqsave(&nvt->tx.lock, flags);
	tx_state = nvt->tx.tx_state;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	tx_inactive = (tx_state == ST_TX_NONE);

	return tx_inactive;
}

/* interrupt service routine for incoming and outgoing CIR data */
static irqreturn_t nvt_cir_isr(int irq, void *data)
{
	struct nvt_dev *nvt = data;
	u8 status, iren, cur_state;
	unsigned long flags;

	nvt_dbg_verbose("%s firing", __func__);

	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_efm_disable(nvt);

	/*
	 * Get IR Status register contents. Write 1 to ack/clear
	 *
	 * bit: reg name      - description
	 *   7: CIR_IRSTS_RDR - RX Data Ready
	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
	 *   5: CIR_IRSTS_PE  - Packet End
	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
	 *   0: CIR_IRSTS_GH  - Min Length Detected
	 */
	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
	if (!status) {
		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
		return IRQ_RETVAL(IRQ_NONE);
	}

	/* ack/clear all irq flags we've got */
	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);

	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
	iren = nvt_cir_reg_read(nvt, CIR_IREN);
	if (!iren) {
		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
		return IRQ_RETVAL(IRQ_NONE);
	}

	if (debug)
		nvt_cir_log_irqs(status, iren);

	if (status & CIR_IRSTS_RTR) {
		/* FIXME: add code for study/learn mode */
		/* We only do rx if not tx'ing */
		if (nvt_cir_tx_inactive(nvt))
			nvt_get_rx_ir_data(nvt);
	}

	if (status & CIR_IRSTS_PE) {
		if (nvt_cir_tx_inactive(nvt))
			nvt_get_rx_ir_data(nvt);

		spin_lock_irqsave(&nvt->nvt_lock, flags);

		cur_state = nvt->study_state;

		spin_unlock_irqrestore(&nvt->nvt_lock, flags);

		if (cur_state == ST_STUDY_NONE)
			nvt_clear_cir_fifo(nvt);
	}

	if (status & CIR_IRSTS_TE)
		nvt_clear_tx_fifo(nvt);

	if (status & CIR_IRSTS_TTR) {
		unsigned int pos, count;
		u8 tmp;

		spin_lock_irqsave(&nvt->tx.lock, flags);

		pos = nvt->tx.cur_buf_num;
		count = nvt->tx.buf_count;

		/* Write data into the hardware tx fifo while pos < count */
		if (pos < count) {
			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
			nvt->tx.cur_buf_num++;
		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
		} else {
			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
		}

		spin_unlock_irqrestore(&nvt->tx.lock, flags);

	}

	if (status & CIR_IRSTS_TFU) {
		spin_lock_irqsave(&nvt->tx.lock, flags);
		if (nvt->tx.tx_state == ST_TX_REPLY) {
			nvt->tx.tx_state = ST_TX_REQUEST;
			wake_up(&nvt->tx.queue);
		}
		spin_unlock_irqrestore(&nvt->tx.lock, flags);
	}

	nvt_dbg_verbose("%s done", __func__);
	return IRQ_RETVAL(IRQ_HANDLED);
}

/* Interrupt service routine for CIR Wake */
static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
{
	u8 status, iren, val;
	struct nvt_dev *nvt = data;
	unsigned long flags;

	nvt_dbg_wake("%s firing", __func__);

	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
	if (!status)
		return IRQ_RETVAL(IRQ_NONE);

	if (status & CIR_WAKE_IRSTS_IR_PENDING)
		nvt_clear_cir_wake_fifo(nvt);

	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);

	/* Interrupt may be shared with CIR, bail if Wake not enabled */
	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
	if (!iren) {
		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
		return IRQ_RETVAL(IRQ_HANDLED);
	}

	if ((status & CIR_WAKE_IRSTS_PE) &&
	    (nvt->wake_state == ST_WAKE_START)) {
		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
			nvt_dbg("setting wake up key: 0x%x", val);
		}

		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
		spin_lock_irqsave(&nvt->nvt_lock, flags);
		nvt->wake_state = ST_WAKE_FINISH;
		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
	}

	nvt_dbg_wake("%s done", __func__);
	return IRQ_RETVAL(IRQ_HANDLED);
}

static void nvt_enable_cir(struct nvt_dev *nvt)
{
	/* set function enable flags */
	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
			  CIR_IRCON);

	nvt_efm_enable(nvt);

	/* enable the CIR logical device */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	/* clear all pending interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* enable interrupts */
	nvt_set_cir_iren(nvt);
}

static void nvt_disable_cir(struct nvt_dev *nvt)
{
	/* disable CIR interrupts */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);

	/* clear any and all pending interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* clear all function enable flags */
	nvt_cir_reg_write(nvt, 0, CIR_IRCON);

	/* clear hardware rx and tx fifos */
	nvt_clear_cir_fifo(nvt);
	nvt_clear_tx_fifo(nvt);

	nvt_efm_enable(nvt);

	/* disable the CIR logical device */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);
}

static int nvt_open(struct rc_dev *dev)
{
	struct nvt_dev *nvt = dev->priv;
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt->in_use = true;
	nvt_enable_cir(nvt);
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	return 0;
}

static void nvt_close(struct rc_dev *dev)
{
	struct nvt_dev *nvt = dev->priv;
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt->in_use = false;
	nvt_disable_cir(nvt);
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}

/* Allocate memory, probe hardware, and initialize everything */
static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
{
	struct nvt_dev *nvt;
	struct rc_dev *rdev;
	int ret = -ENOMEM;

	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
	if (!nvt)
		return ret;

	/* input device for IR remote (and tx) */
	rdev = rc_allocate_device();
	if (!rdev)
		goto failure;

	ret = -ENODEV;
	/* validate pnp resources */
	if (!pnp_port_valid(pdev, 0) ||
	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
		goto failure;
	}

	if (!pnp_irq_valid(pdev, 0)) {
		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
		goto failure;
	}

	if (!pnp_port_valid(pdev, 1) ||
	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
		goto failure;
	}

	nvt->cir_addr = pnp_port_start(pdev, 0);
	nvt->cir_irq  = pnp_irq(pdev, 0);

	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
	/* irq is always shared between cir and cir wake */
	nvt->cir_wake_irq  = nvt->cir_irq;

	nvt->cr_efir = CR_EFIR;
	nvt->cr_efdr = CR_EFDR;

	spin_lock_init(&nvt->nvt_lock);
	spin_lock_init(&nvt->tx.lock);
	init_ir_raw_event(&nvt->rawir);

	ret = -EBUSY;
	/* now claim resources */
	if (!request_region(nvt->cir_addr,
			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
		goto failure;

	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
			NVT_DRIVER_NAME, (void *)nvt))
		goto failure;

	if (!request_region(nvt->cir_wake_addr,
			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
		goto failure;

	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
			NVT_DRIVER_NAME, (void *)nvt))
		goto failure;

	pnp_set_drvdata(pdev, nvt);
	nvt->pdev = pdev;

	init_waitqueue_head(&nvt->tx.queue);

	ret = nvt_hw_detect(nvt);
	if (ret)
		goto failure;

	/* Initialize CIR & CIR Wake Logical Devices */
	nvt_efm_enable(nvt);
	nvt_cir_ldev_init(nvt);
	nvt_cir_wake_ldev_init(nvt);
	nvt_efm_disable(nvt);

	/* Initialize CIR & CIR Wake Config Registers */
	nvt_cir_regs_init(nvt);
	nvt_cir_wake_regs_init(nvt);

	/* Set up the rc device */
	rdev->priv = nvt;
	rdev->driver_type = RC_DRIVER_IR_RAW;
	rdev->allowed_protos = RC_TYPE_ALL;
	rdev->open = nvt_open;
	rdev->close = nvt_close;
	rdev->tx_ir = nvt_tx_ir;
	rdev->s_tx_carrier = nvt_set_tx_carrier;
	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
	rdev->input_id.bustype = BUS_HOST;
	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
	rdev->input_id.product = nvt->chip_major;
	rdev->input_id.version = nvt->chip_minor;
	rdev->driver_name = NVT_DRIVER_NAME;
	rdev->map_name = RC_MAP_RC6_MCE;
#if 0
	rdev->min_timeout = XYZ;
	rdev->max_timeout = XYZ;
	rdev->timeout = XYZ;
	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
	rdev->rx_resolution = XYZ;
	/* tx bits */
	rdev->tx_resolution = XYZ;
#endif

	ret = rc_register_device(rdev);
	if (ret)
		goto failure;

	device_set_wakeup_capable(&pdev->dev, 1);
	device_set_wakeup_enable(&pdev->dev, 1);
	nvt->rdev = rdev;
	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
	if (debug) {
		cir_dump_regs(nvt);
		cir_wake_dump_regs(nvt);
	}

	return 0;

failure:
	if (nvt->cir_irq)
		free_irq(nvt->cir_irq, nvt);
	if (nvt->cir_addr)
		release_region(nvt->cir_addr, CIR_IOREG_LENGTH);

	if (nvt->cir_wake_irq)
		free_irq(nvt->cir_wake_irq, nvt);
	if (nvt->cir_wake_addr)
		release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);

	rc_free_device(rdev);
	kfree(nvt);

	return ret;
}

static void __devexit nvt_remove(struct pnp_dev *pdev)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	/* disable CIR */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);
	nvt_disable_cir(nvt);
	/* enable CIR Wake (for IR power-on) */
	nvt_enable_wake(nvt);
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	/* free resources */
	free_irq(nvt->cir_irq, nvt);
	free_irq(nvt->cir_wake_irq, nvt);
	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);

	rc_unregister_device(nvt->rdev);

	kfree(nvt);
}

static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	unsigned long flags;

	nvt_dbg("%s called", __func__);

	/* zero out misc state tracking */
	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt->study_state = ST_STUDY_NONE;
	nvt->wake_state = ST_WAKE_NONE;
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	spin_lock_irqsave(&nvt->tx.lock, flags);
	nvt->tx.tx_state = ST_TX_NONE;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	/* disable all CIR interrupts */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);

	nvt_efm_enable(nvt);

	/* disable cir logical dev */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	/* make sure wake is enabled */
	nvt_enable_wake(nvt);

	return 0;
}

static int nvt_resume(struct pnp_dev *pdev)
{
	int ret = 0;
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);

	nvt_dbg("%s called", __func__);

	/* open interrupt */
	nvt_set_cir_iren(nvt);

	/* Enable CIR logical device */
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	nvt_cir_regs_init(nvt);
	nvt_cir_wake_regs_init(nvt);

	return ret;
}

static void nvt_shutdown(struct pnp_dev *pdev)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	nvt_enable_wake(nvt);
}

static const struct pnp_device_id nvt_ids[] = {
	{ "WEC0530", 0 },   /* CIR */
	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
	{ "", 0 },
};

static struct pnp_driver nvt_driver = {
	.name		= NVT_DRIVER_NAME,
	.id_table	= nvt_ids,
	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
	.probe		= nvt_probe,
	.remove		= __devexit_p(nvt_remove),
	.suspend	= nvt_suspend,
	.resume		= nvt_resume,
	.shutdown	= nvt_shutdown,
};

int nvt_init(void)
{
	return pnp_register_driver(&nvt_driver);
}

void nvt_exit(void)
{
	pnp_unregister_driver(&nvt_driver);
}

module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging output");

MODULE_DEVICE_TABLE(pnp, nvt_ids);
MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");

MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
MODULE_LICENSE("GPL");

module_init(nvt_init);
module_exit(nvt_exit);