summaryrefslogtreecommitdiff
path: root/drivers/media/pci/cobalt/cobalt-omnitek.c
blob: 4c137453e6798cb1cffe5d10083b27dbe24ad8bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  Omnitek Scatter-Gather DMA Controller
 *
 *  Copyright 2012-2015 Cisco Systems, Inc. and/or its affiliates.
 *  All rights reserved.
 */

#include <linux/string.h>
#include <linux/io.h>
#include <linux/pci_regs.h>
#include <linux/spinlock.h>

#include "cobalt-driver.h"
#include "cobalt-omnitek.h"

/* descriptor */
#define END_OF_CHAIN		(1 << 1)
#define INTERRUPT_ENABLE	(1 << 2)
#define WRITE_TO_PCI		(1 << 3)
#define READ_FROM_PCI		(0 << 3)
#define DESCRIPTOR_FLAG_MSK	(END_OF_CHAIN | INTERRUPT_ENABLE | WRITE_TO_PCI)
#define NEXT_ADRS_MSK		0xffffffe0

/* control/status register */
#define ENABLE                  (1 << 0)
#define START                   (1 << 1)
#define ABORT                   (1 << 2)
#define DONE                    (1 << 4)
#define SG_INTERRUPT            (1 << 5)
#define EVENT_INTERRUPT         (1 << 6)
#define SCATTER_GATHER_MODE     (1 << 8)
#define DISABLE_VIDEO_RESYNC    (1 << 9)
#define EVENT_INTERRUPT_ENABLE  (1 << 10)
#define DIRECTIONAL_MSK         (3 << 16)
#define INPUT_ONLY              (0 << 16)
#define OUTPUT_ONLY             (1 << 16)
#define BIDIRECTIONAL           (2 << 16)
#define DMA_TYPE_MEMORY         (0 << 18)
#define DMA_TYPE_FIFO		(1 << 18)

#define BASE			(cobalt->bar0)
#define CAPABILITY_HEADER	(BASE)
#define CAPABILITY_REGISTER	(BASE + 0x04)
#define PCI_64BIT		(1 << 8)
#define LOCAL_64BIT		(1 << 9)
#define INTERRUPT_STATUS	(BASE + 0x08)
#define PCI(c)			(BASE + 0x40 + ((c) * 0x40))
#define SIZE(c)			(BASE + 0x58 + ((c) * 0x40))
#define DESCRIPTOR(c)		(BASE + 0x50 + ((c) * 0x40))
#define CS_REG(c)		(BASE + 0x60 + ((c) * 0x40))
#define BYTES_TRANSFERRED(c)	(BASE + 0x64 + ((c) * 0x40))


static char *get_dma_direction(u32 status)
{
	switch (status & DIRECTIONAL_MSK) {
	case INPUT_ONLY: return "Input";
	case OUTPUT_ONLY: return "Output";
	case BIDIRECTIONAL: return "Bidirectional";
	}
	return "";
}

static void show_dma_capability(struct cobalt *cobalt)
{
	u32 header = ioread32(CAPABILITY_HEADER);
	u32 capa = ioread32(CAPABILITY_REGISTER);
	u32 i;

	cobalt_info("Omnitek DMA capability: ID 0x%02x Version 0x%02x Next 0x%x Size 0x%x\n",
		    header & 0xff, (header >> 8) & 0xff,
		    (header >> 16) & 0xffff, (capa >> 24) & 0xff);

	switch ((capa >> 8) & 0x3) {
	case 0:
		cobalt_info("Omnitek DMA: 32 bits PCIe and Local\n");
		break;
	case 1:
		cobalt_info("Omnitek DMA: 64 bits PCIe, 32 bits Local\n");
		break;
	case 3:
		cobalt_info("Omnitek DMA: 64 bits PCIe and Local\n");
		break;
	}

	for (i = 0;  i < (capa & 0xf);  i++) {
		u32 status = ioread32(CS_REG(i));

		cobalt_info("Omnitek DMA channel #%d: %s %s\n", i,
			    status & DMA_TYPE_FIFO ? "FIFO" : "MEMORY",
			    get_dma_direction(status));
	}
}

void omni_sg_dma_start(struct cobalt_stream *s, struct sg_dma_desc_info *desc)
{
	struct cobalt *cobalt = s->cobalt;

	iowrite32((u32)((u64)desc->bus >> 32), DESCRIPTOR(s->dma_channel) + 4);
	iowrite32((u32)desc->bus & NEXT_ADRS_MSK, DESCRIPTOR(s->dma_channel));
	iowrite32(ENABLE | SCATTER_GATHER_MODE | START, CS_REG(s->dma_channel));
}

bool is_dma_done(struct cobalt_stream *s)
{
	struct cobalt *cobalt = s->cobalt;

	if (ioread32(CS_REG(s->dma_channel)) & DONE)
		return true;

	return false;
}

void omni_sg_dma_abort_channel(struct cobalt_stream *s)
{
	struct cobalt *cobalt = s->cobalt;

	if (is_dma_done(s) == false)
		iowrite32(ABORT, CS_REG(s->dma_channel));
}

int omni_sg_dma_init(struct cobalt *cobalt)
{
	u32 capa = ioread32(CAPABILITY_REGISTER);
	int i;

	cobalt->first_fifo_channel = 0;
	cobalt->dma_channels = capa & 0xf;
	if (capa & PCI_64BIT)
		cobalt->pci_32_bit = false;
	else
		cobalt->pci_32_bit = true;

	for (i = 0; i < cobalt->dma_channels; i++) {
		u32 status = ioread32(CS_REG(i));
		u32 ctrl = ioread32(CS_REG(i));

		if (!(ctrl & DONE))
			iowrite32(ABORT, CS_REG(i));

		if (!(status & DMA_TYPE_FIFO))
			cobalt->first_fifo_channel++;
	}
	show_dma_capability(cobalt);
	return 0;
}

int descriptor_list_create(struct cobalt *cobalt,
		struct scatterlist *scatter_list, bool to_pci, unsigned sglen,
		unsigned size, unsigned width, unsigned stride,
		struct sg_dma_desc_info *desc)
{
	struct sg_dma_descriptor *d = (struct sg_dma_descriptor *)desc->virt;
	dma_addr_t next = desc->bus;
	unsigned offset = 0;
	unsigned copy_bytes = width;
	unsigned copied = 0;
	bool first = true;

	/* Must be 4-byte aligned */
	WARN_ON(sg_dma_address(scatter_list) & 3);
	WARN_ON(size & 3);
	WARN_ON(next & 3);
	WARN_ON(stride & 3);
	WARN_ON(stride < width);
	if (width >= stride)
		copy_bytes = stride = size;

	while (size) {
		dma_addr_t addr = sg_dma_address(scatter_list) + offset;
		unsigned bytes;

		if (addr == 0)
			return -EFAULT;
		if (cobalt->pci_32_bit) {
			WARN_ON((u64)addr >> 32);
			if ((u64)addr >> 32)
				return -EFAULT;
		}

		/* PCIe address */
		d->pci_l = addr & 0xffffffff;
		/* If dma_addr_t is 32 bits, then addr >> 32 is actually the
		   equivalent of addr >> 0 in gcc. So must cast to u64. */
		d->pci_h = (u64)addr >> 32;

		/* Sync to start of streaming frame */
		d->local = 0;
		d->reserved0 = 0;

		/* Transfer bytes */
		bytes = min(sg_dma_len(scatter_list) - offset,
				copy_bytes - copied);

		if (first) {
			if (to_pci)
				d->local = 0x11111111;
			first = false;
			if (sglen == 1) {
				/* Make sure there are always at least two
				 * descriptors */
				d->bytes = (bytes / 2) & ~3;
				d->reserved1 = 0;
				size -= d->bytes;
				copied += d->bytes;
				offset += d->bytes;
				addr += d->bytes;
				next += sizeof(struct sg_dma_descriptor);
				d->next_h = (u32)((u64)next >> 32);
				d->next_l = (u32)next |
					(to_pci ? WRITE_TO_PCI : 0);
				bytes -= d->bytes;
				d++;
				/* PCIe address */
				d->pci_l = addr & 0xffffffff;
				/* If dma_addr_t is 32 bits, then addr >> 32
				 * is actually the equivalent of addr >> 0 in
				 * gcc. So must cast to u64. */
				d->pci_h = (u64)addr >> 32;

				/* Sync to start of streaming frame */
				d->local = 0;
				d->reserved0 = 0;
			}
		}

		d->bytes = bytes;
		d->reserved1 = 0;
		size -= bytes;
		copied += bytes;
		offset += bytes;

		if (copied == copy_bytes) {
			while (copied < stride) {
				bytes = min(sg_dma_len(scatter_list) - offset,
						stride - copied);
				copied += bytes;
				offset += bytes;
				size -= bytes;
				if (sg_dma_len(scatter_list) == offset) {
					offset = 0;
					scatter_list = sg_next(scatter_list);
				}
			}
			copied = 0;
		} else {
			offset = 0;
			scatter_list = sg_next(scatter_list);
		}

		/* Next descriptor + control bits */
		next += sizeof(struct sg_dma_descriptor);
		if (size == 0) {
			/* Loopback to the first descriptor */
			d->next_h = (u32)((u64)desc->bus >> 32);
			d->next_l = (u32)desc->bus |
				(to_pci ? WRITE_TO_PCI : 0) | INTERRUPT_ENABLE;
			if (!to_pci)
				d->local = 0x22222222;
			desc->last_desc_virt = d;
		} else {
			d->next_h = (u32)((u64)next >> 32);
			d->next_l = (u32)next | (to_pci ? WRITE_TO_PCI : 0);
		}
		d++;
	}
	return 0;
}

void descriptor_list_chain(struct sg_dma_desc_info *this,
			   struct sg_dma_desc_info *next)
{
	struct sg_dma_descriptor *d = this->last_desc_virt;
	u32 direction = d->next_l & WRITE_TO_PCI;

	if (next == NULL) {
		d->next_h = 0;
		d->next_l = direction | INTERRUPT_ENABLE | END_OF_CHAIN;
	} else {
		d->next_h = (u32)((u64)next->bus >> 32);
		d->next_l = (u32)next->bus | direction | INTERRUPT_ENABLE;
	}
}

void *descriptor_list_allocate(struct sg_dma_desc_info *desc, size_t bytes)
{
	desc->size = bytes;
	desc->virt = dma_alloc_coherent(desc->dev, bytes,
					&desc->bus, GFP_KERNEL);
	return desc->virt;
}

void descriptor_list_free(struct sg_dma_desc_info *desc)
{
	if (desc->virt)
		dma_free_coherent(desc->dev, desc->size,
				  desc->virt, desc->bus);
	desc->virt = NULL;
}

void descriptor_list_interrupt_enable(struct sg_dma_desc_info *desc)
{
	struct sg_dma_descriptor *d = desc->last_desc_virt;

	d->next_l |= INTERRUPT_ENABLE;
}

void descriptor_list_interrupt_disable(struct sg_dma_desc_info *desc)
{
	struct sg_dma_descriptor *d = desc->last_desc_virt;

	d->next_l &= ~INTERRUPT_ENABLE;
}

void descriptor_list_loopback(struct sg_dma_desc_info *desc)
{
	struct sg_dma_descriptor *d = desc->last_desc_virt;

	d->next_h = (u32)((u64)desc->bus >> 32);
	d->next_l = (u32)desc->bus | (d->next_l & DESCRIPTOR_FLAG_MSK);
}

void descriptor_list_end_of_chain(struct sg_dma_desc_info *desc)
{
	struct sg_dma_descriptor *d = desc->last_desc_virt;

	d->next_l |= END_OF_CHAIN;
}