summaryrefslogtreecommitdiff
path: root/drivers/md/persistent-data/dm-btree.c
blob: c573402033b2dd9e89dc11ad2f6e1b7e8bbb4263 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
 * Copyright (C) 2011 Red Hat, Inc.
 *
 * This file is released under the GPL.
 */

#include "dm-btree-internal.h"
#include "dm-space-map.h"
#include "dm-transaction-manager.h"

#include <linux/export.h>
#include <linux/device-mapper.h>

#define DM_MSG_PREFIX "btree"

/*----------------------------------------------------------------
 * Array manipulation
 *--------------------------------------------------------------*/
static void memcpy_disk(void *dest, const void *src, size_t len)
	__dm_written_to_disk(src)
{
	memcpy(dest, src, len);
	__dm_unbless_for_disk(src);
}

static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
			 unsigned index, void *elt)
	__dm_written_to_disk(elt)
{
	if (index < nr_elts)
		memmove(base + (elt_size * (index + 1)),
			base + (elt_size * index),
			(nr_elts - index) * elt_size);

	memcpy_disk(base + (elt_size * index), elt, elt_size);
}

/*----------------------------------------------------------------*/

/* makes the assumption that no two keys are the same. */
static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
{
	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);

	while (hi - lo > 1) {
		int mid = lo + ((hi - lo) / 2);
		uint64_t mid_key = le64_to_cpu(n->keys[mid]);

		if (mid_key == key)
			return mid;

		if (mid_key < key)
			lo = mid;
		else
			hi = mid;
	}

	return want_hi ? hi : lo;
}

int lower_bound(struct btree_node *n, uint64_t key)
{
	return bsearch(n, key, 0);
}

void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
		  struct dm_btree_value_type *vt)
{
	unsigned i;
	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);

	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
		for (i = 0; i < nr_entries; i++)
			dm_tm_inc(tm, value64(n, i));
	else if (vt->inc)
		for (i = 0; i < nr_entries; i++)
			vt->inc(vt->context, value_ptr(n, i));
}

static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
		      uint64_t key, void *value)
		      __dm_written_to_disk(value)
{
	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
	__le64 key_le = cpu_to_le64(key);

	if (index > nr_entries ||
	    index >= le32_to_cpu(node->header.max_entries)) {
		DMERR("too many entries in btree node for insert");
		__dm_unbless_for_disk(value);
		return -ENOMEM;
	}

	__dm_bless_for_disk(&key_le);

	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
	array_insert(value_base(node), value_size, nr_entries, index, value);
	node->header.nr_entries = cpu_to_le32(nr_entries + 1);

	return 0;
}

/*----------------------------------------------------------------*/

/*
 * We want 3n entries (for some n).  This works more nicely for repeated
 * insert remove loops than (2n + 1).
 */
static uint32_t calc_max_entries(size_t value_size, size_t block_size)
{
	uint32_t total, n;
	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */

	block_size -= sizeof(struct node_header);
	total = block_size / elt_size;
	n = total / 3;		/* rounds down */

	return 3 * n;
}

int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
{
	int r;
	struct dm_block *b;
	struct btree_node *n;
	size_t block_size;
	uint32_t max_entries;

	r = new_block(info, &b);
	if (r < 0)
		return r;

	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
	max_entries = calc_max_entries(info->value_type.size, block_size);

	n = dm_block_data(b);
	memset(n, 0, block_size);
	n->header.flags = cpu_to_le32(LEAF_NODE);
	n->header.nr_entries = cpu_to_le32(0);
	n->header.max_entries = cpu_to_le32(max_entries);
	n->header.value_size = cpu_to_le32(info->value_type.size);

	*root = dm_block_location(b);
	unlock_block(info, b);

	return 0;
}
EXPORT_SYMBOL_GPL(dm_btree_empty);

/*----------------------------------------------------------------*/

/*
 * Deletion uses a recursive algorithm, since we have limited stack space
 * we explicitly manage our own stack on the heap.
 */
#define MAX_SPINE_DEPTH 64
struct frame {
	struct dm_block *b;
	struct btree_node *n;
	unsigned level;
	unsigned nr_children;
	unsigned current_child;
};

struct del_stack {
	struct dm_btree_info *info;
	struct dm_transaction_manager *tm;
	int top;
	struct frame spine[MAX_SPINE_DEPTH];
};

static int top_frame(struct del_stack *s, struct frame **f)
{
	if (s->top < 0) {
		DMERR("btree deletion stack empty");
		return -EINVAL;
	}

	*f = s->spine + s->top;

	return 0;
}

static int unprocessed_frames(struct del_stack *s)
{
	return s->top >= 0;
}

static void prefetch_children(struct del_stack *s, struct frame *f)
{
	unsigned i;
	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);

	for (i = 0; i < f->nr_children; i++)
		dm_bm_prefetch(bm, value64(f->n, i));
}

static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
{
	return f->level < (info->levels - 1);
}

static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
{
	int r;
	uint32_t ref_count;

	if (s->top >= MAX_SPINE_DEPTH - 1) {
		DMERR("btree deletion stack out of memory");
		return -ENOMEM;
	}

	r = dm_tm_ref(s->tm, b, &ref_count);
	if (r)
		return r;

	if (ref_count > 1)
		/*
		 * This is a shared node, so we can just decrement it's
		 * reference counter and leave the children.
		 */
		dm_tm_dec(s->tm, b);

	else {
		uint32_t flags;
		struct frame *f = s->spine + ++s->top;

		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
		if (r) {
			s->top--;
			return r;
		}

		f->n = dm_block_data(f->b);
		f->level = level;
		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
		f->current_child = 0;

		flags = le32_to_cpu(f->n->header.flags);
		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
			prefetch_children(s, f);
	}

	return 0;
}

static void pop_frame(struct del_stack *s)
{
	struct frame *f = s->spine + s->top--;

	dm_tm_dec(s->tm, dm_block_location(f->b));
	dm_tm_unlock(s->tm, f->b);
}

int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
{
	int r;
	struct del_stack *s;

	s = kmalloc(sizeof(*s), GFP_NOIO);
	if (!s)
		return -ENOMEM;
	s->info = info;
	s->tm = info->tm;
	s->top = -1;

	r = push_frame(s, root, 0);
	if (r)
		goto out;

	while (unprocessed_frames(s)) {
		uint32_t flags;
		struct frame *f;
		dm_block_t b;

		r = top_frame(s, &f);
		if (r)
			goto out;

		if (f->current_child >= f->nr_children) {
			pop_frame(s);
			continue;
		}

		flags = le32_to_cpu(f->n->header.flags);
		if (flags & INTERNAL_NODE) {
			b = value64(f->n, f->current_child);
			f->current_child++;
			r = push_frame(s, b, f->level);
			if (r)
				goto out;

		} else if (is_internal_level(info, f)) {
			b = value64(f->n, f->current_child);
			f->current_child++;
			r = push_frame(s, b, f->level + 1);
			if (r)
				goto out;

		} else {
			if (info->value_type.dec) {
				unsigned i;

				for (i = 0; i < f->nr_children; i++)
					info->value_type.dec(info->value_type.context,
							     value_ptr(f->n, i));
			}
			pop_frame(s);
		}
	}

out:
	kfree(s);
	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_del);

/*----------------------------------------------------------------*/

static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
			    int (*search_fn)(struct btree_node *, uint64_t),
			    uint64_t *result_key, void *v, size_t value_size)
{
	int i, r;
	uint32_t flags, nr_entries;

	do {
		r = ro_step(s, block);
		if (r < 0)
			return r;

		i = search_fn(ro_node(s), key);

		flags = le32_to_cpu(ro_node(s)->header.flags);
		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
		if (i < 0 || i >= nr_entries)
			return -ENODATA;

		if (flags & INTERNAL_NODE)
			block = value64(ro_node(s), i);

	} while (!(flags & LEAF_NODE));

	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
	memcpy(v, value_ptr(ro_node(s), i), value_size);

	return 0;
}

int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
		    uint64_t *keys, void *value_le)
{
	unsigned level, last_level = info->levels - 1;
	int r = -ENODATA;
	uint64_t rkey;
	__le64 internal_value_le;
	struct ro_spine spine;

	init_ro_spine(&spine, info);
	for (level = 0; level < info->levels; level++) {
		size_t size;
		void *value_p;

		if (level == last_level) {
			value_p = value_le;
			size = info->value_type.size;

		} else {
			value_p = &internal_value_le;
			size = sizeof(uint64_t);
		}

		r = btree_lookup_raw(&spine, root, keys[level],
				     lower_bound, &rkey,
				     value_p, size);

		if (!r) {
			if (rkey != keys[level]) {
				exit_ro_spine(&spine);
				return -ENODATA;
			}
		} else {
			exit_ro_spine(&spine);
			return r;
		}

		root = le64_to_cpu(internal_value_le);
	}
	exit_ro_spine(&spine);

	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_lookup);

/*
 * Splits a node by creating a sibling node and shifting half the nodes
 * contents across.  Assumes there is a parent node, and it has room for
 * another child.
 *
 * Before:
 *	  +--------+
 *	  | Parent |
 *	  +--------+
 *	     |
 *	     v
 *	+----------+
 *	| A ++++++ |
 *	+----------+
 *
 *
 * After:
 *		+--------+
 *		| Parent |
 *		+--------+
 *		  |	|
 *		  v	+------+
 *	    +---------+	       |
 *	    | A* +++  |	       v
 *	    +---------+	  +-------+
 *			  | B +++ |
 *			  +-------+
 *
 * Where A* is a shadow of A.
 */
static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
			       uint64_t key)
{
	int r;
	size_t size;
	unsigned nr_left, nr_right;
	struct dm_block *left, *right, *parent;
	struct btree_node *ln, *rn, *pn;
	__le64 location;

	left = shadow_current(s);

	r = new_block(s->info, &right);
	if (r < 0)
		return r;

	ln = dm_block_data(left);
	rn = dm_block_data(right);

	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;

	ln->header.nr_entries = cpu_to_le32(nr_left);

	rn->header.flags = ln->header.flags;
	rn->header.nr_entries = cpu_to_le32(nr_right);
	rn->header.max_entries = ln->header.max_entries;
	rn->header.value_size = ln->header.value_size;
	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));

	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
		sizeof(uint64_t) : s->info->value_type.size;
	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
	       size * nr_right);

	/*
	 * Patch up the parent
	 */
	parent = shadow_parent(s);

	pn = dm_block_data(parent);
	location = cpu_to_le64(dm_block_location(left));
	__dm_bless_for_disk(&location);
	memcpy_disk(value_ptr(pn, parent_index),
		    &location, sizeof(__le64));

	location = cpu_to_le64(dm_block_location(right));
	__dm_bless_for_disk(&location);

	r = insert_at(sizeof(__le64), pn, parent_index + 1,
		      le64_to_cpu(rn->keys[0]), &location);
	if (r)
		return r;

	if (key < le64_to_cpu(rn->keys[0])) {
		unlock_block(s->info, right);
		s->nodes[1] = left;
	} else {
		unlock_block(s->info, left);
		s->nodes[1] = right;
	}

	return 0;
}

/*
 * Splits a node by creating two new children beneath the given node.
 *
 * Before:
 *	  +----------+
 *	  | A ++++++ |
 *	  +----------+
 *
 *
 * After:
 *	+------------+
 *	| A (shadow) |
 *	+------------+
 *	    |	|
 *   +------+	+----+
 *   |		     |
 *   v		     v
 * +-------+	 +-------+
 * | B +++ |	 | C +++ |
 * +-------+	 +-------+
 */
static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
{
	int r;
	size_t size;
	unsigned nr_left, nr_right;
	struct dm_block *left, *right, *new_parent;
	struct btree_node *pn, *ln, *rn;
	__le64 val;

	new_parent = shadow_current(s);

	r = new_block(s->info, &left);
	if (r < 0)
		return r;

	r = new_block(s->info, &right);
	if (r < 0) {
		unlock_block(s->info, left);
		return r;
	}

	pn = dm_block_data(new_parent);
	ln = dm_block_data(left);
	rn = dm_block_data(right);

	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;

	ln->header.flags = pn->header.flags;
	ln->header.nr_entries = cpu_to_le32(nr_left);
	ln->header.max_entries = pn->header.max_entries;
	ln->header.value_size = pn->header.value_size;

	rn->header.flags = pn->header.flags;
	rn->header.nr_entries = cpu_to_le32(nr_right);
	rn->header.max_entries = pn->header.max_entries;
	rn->header.value_size = pn->header.value_size;

	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));

	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
		sizeof(__le64) : s->info->value_type.size;
	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
	       nr_right * size);

	/* new_parent should just point to l and r now */
	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
	pn->header.nr_entries = cpu_to_le32(2);
	pn->header.max_entries = cpu_to_le32(
		calc_max_entries(sizeof(__le64),
				 dm_bm_block_size(
					 dm_tm_get_bm(s->info->tm))));
	pn->header.value_size = cpu_to_le32(sizeof(__le64));

	val = cpu_to_le64(dm_block_location(left));
	__dm_bless_for_disk(&val);
	pn->keys[0] = ln->keys[0];
	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));

	val = cpu_to_le64(dm_block_location(right));
	__dm_bless_for_disk(&val);
	pn->keys[1] = rn->keys[0];
	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));

	/*
	 * rejig the spine.  This is ugly, since it knows too
	 * much about the spine
	 */
	if (s->nodes[0] != new_parent) {
		unlock_block(s->info, s->nodes[0]);
		s->nodes[0] = new_parent;
	}
	if (key < le64_to_cpu(rn->keys[0])) {
		unlock_block(s->info, right);
		s->nodes[1] = left;
	} else {
		unlock_block(s->info, left);
		s->nodes[1] = right;
	}
	s->count = 2;

	return 0;
}

static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
			    struct dm_btree_value_type *vt,
			    uint64_t key, unsigned *index)
{
	int r, i = *index, top = 1;
	struct btree_node *node;

	for (;;) {
		r = shadow_step(s, root, vt);
		if (r < 0)
			return r;

		node = dm_block_data(shadow_current(s));

		/*
		 * We have to patch up the parent node, ugly, but I don't
		 * see a way to do this automatically as part of the spine
		 * op.
		 */
		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));

			__dm_bless_for_disk(&location);
			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
				    &location, sizeof(__le64));
		}

		node = dm_block_data(shadow_current(s));

		if (node->header.nr_entries == node->header.max_entries) {
			if (top)
				r = btree_split_beneath(s, key);
			else
				r = btree_split_sibling(s, i, key);

			if (r < 0)
				return r;
		}

		node = dm_block_data(shadow_current(s));

		i = lower_bound(node, key);

		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
			break;

		if (i < 0) {
			/* change the bounds on the lowest key */
			node->keys[0] = cpu_to_le64(key);
			i = 0;
		}

		root = value64(node, i);
		top = 0;
	}

	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
		i++;

	*index = i;
	return 0;
}

static int insert(struct dm_btree_info *info, dm_block_t root,
		  uint64_t *keys, void *value, dm_block_t *new_root,
		  int *inserted)
		  __dm_written_to_disk(value)
{
	int r, need_insert;
	unsigned level, index = -1, last_level = info->levels - 1;
	dm_block_t block = root;
	struct shadow_spine spine;
	struct btree_node *n;
	struct dm_btree_value_type le64_type;

	init_le64_type(info->tm, &le64_type);
	init_shadow_spine(&spine, info);

	for (level = 0; level < (info->levels - 1); level++) {
		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
		if (r < 0)
			goto bad;

		n = dm_block_data(shadow_current(&spine));
		need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
			       (le64_to_cpu(n->keys[index]) != keys[level]));

		if (need_insert) {
			dm_block_t new_tree;
			__le64 new_le;

			r = dm_btree_empty(info, &new_tree);
			if (r < 0)
				goto bad;

			new_le = cpu_to_le64(new_tree);
			__dm_bless_for_disk(&new_le);

			r = insert_at(sizeof(uint64_t), n, index,
				      keys[level], &new_le);
			if (r)
				goto bad;
		}

		if (level < last_level)
			block = value64(n, index);
	}

	r = btree_insert_raw(&spine, block, &info->value_type,
			     keys[level], &index);
	if (r < 0)
		goto bad;

	n = dm_block_data(shadow_current(&spine));
	need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
		       (le64_to_cpu(n->keys[index]) != keys[level]));

	if (need_insert) {
		if (inserted)
			*inserted = 1;

		r = insert_at(info->value_type.size, n, index,
			      keys[level], value);
		if (r)
			goto bad_unblessed;
	} else {
		if (inserted)
			*inserted = 0;

		if (info->value_type.dec &&
		    (!info->value_type.equal ||
		     !info->value_type.equal(
			     info->value_type.context,
			     value_ptr(n, index),
			     value))) {
			info->value_type.dec(info->value_type.context,
					     value_ptr(n, index));
		}
		memcpy_disk(value_ptr(n, index),
			    value, info->value_type.size);
	}

	*new_root = shadow_root(&spine);
	exit_shadow_spine(&spine);

	return 0;

bad:
	__dm_unbless_for_disk(value);
bad_unblessed:
	exit_shadow_spine(&spine);
	return r;
}

int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
		    uint64_t *keys, void *value, dm_block_t *new_root)
		    __dm_written_to_disk(value)
{
	return insert(info, root, keys, value, new_root, NULL);
}
EXPORT_SYMBOL_GPL(dm_btree_insert);

int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
			   uint64_t *keys, void *value, dm_block_t *new_root,
			   int *inserted)
			   __dm_written_to_disk(value)
{
	return insert(info, root, keys, value, new_root, inserted);
}
EXPORT_SYMBOL_GPL(dm_btree_insert_notify);

/*----------------------------------------------------------------*/

static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
		    uint64_t *result_key, dm_block_t *next_block)
{
	int i, r;
	uint32_t flags;

	do {
		r = ro_step(s, block);
		if (r < 0)
			return r;

		flags = le32_to_cpu(ro_node(s)->header.flags);
		i = le32_to_cpu(ro_node(s)->header.nr_entries);
		if (!i)
			return -ENODATA;
		else
			i--;

		if (find_highest)
			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
		else
			*result_key = le64_to_cpu(ro_node(s)->keys[0]);

		if (next_block || flags & INTERNAL_NODE)
			block = value64(ro_node(s), i);

	} while (flags & INTERNAL_NODE);

	if (next_block)
		*next_block = block;
	return 0;
}

static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
			     bool find_highest, uint64_t *result_keys)
{
	int r = 0, count = 0, level;
	struct ro_spine spine;

	init_ro_spine(&spine, info);
	for (level = 0; level < info->levels; level++) {
		r = find_key(&spine, root, find_highest, result_keys + level,
			     level == info->levels - 1 ? NULL : &root);
		if (r == -ENODATA) {
			r = 0;
			break;

		} else if (r)
			break;

		count++;
	}
	exit_ro_spine(&spine);

	return r ? r : count;
}

int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
			      uint64_t *result_keys)
{
	return dm_btree_find_key(info, root, true, result_keys);
}
EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);

int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
			     uint64_t *result_keys)
{
	return dm_btree_find_key(info, root, false, result_keys);
}
EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);

/*----------------------------------------------------------------*/

/*
 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 * space.  Also this only works for single level trees.
 */
static int walk_node(struct dm_btree_info *info, dm_block_t block,
		     int (*fn)(void *context, uint64_t *keys, void *leaf),
		     void *context)
{
	int r;
	unsigned i, nr;
	struct dm_block *node;
	struct btree_node *n;
	uint64_t keys;

	r = bn_read_lock(info, block, &node);
	if (r)
		return r;

	n = dm_block_data(node);

	nr = le32_to_cpu(n->header.nr_entries);
	for (i = 0; i < nr; i++) {
		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
			r = walk_node(info, value64(n, i), fn, context);
			if (r)
				goto out;
		} else {
			keys = le64_to_cpu(*key_ptr(n, i));
			r = fn(context, &keys, value_ptr(n, i));
			if (r)
				goto out;
		}
	}

out:
	dm_tm_unlock(info->tm, node);
	return r;
}

int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
		  int (*fn)(void *context, uint64_t *keys, void *leaf),
		  void *context)
{
	BUG_ON(info->levels > 1);
	return walk_node(info, root, fn, context);
}
EXPORT_SYMBOL_GPL(dm_btree_walk);