summaryrefslogtreecommitdiff
path: root/drivers/md/bcache/util.h
blob: 6f3cb7c9213037498cd8de2a24e28f867495ac67 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/* SPDX-License-Identifier: GPL-2.0 */

#ifndef _BCACHE_UTIL_H
#define _BCACHE_UTIL_H

#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/ratelimit.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/crc64.h>

#include "closure.h"

struct closure;

#ifdef CONFIG_BCACHE_DEBUG

#define EBUG_ON(cond)			BUG_ON(cond)
#define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
#define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)

#else /* DEBUG */

#define EBUG_ON(cond)		do { if (cond) do {} while (0); } while (0)
#define atomic_dec_bug(v)	atomic_dec(v)
#define atomic_inc_bug(v, i)	atomic_inc(v)

#endif

#define DECLARE_HEAP(type, name)					\
	struct {							\
		size_t size, used;					\
		type *data;						\
	} name

#define init_heap(heap, _size, gfp)					\
({									\
	size_t _bytes;							\
	(heap)->used = 0;						\
	(heap)->size = (_size);						\
	_bytes = (heap)->size * sizeof(*(heap)->data);			\
	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
	(heap)->data;							\
})

#define free_heap(heap)							\
do {									\
	kvfree((heap)->data);						\
	(heap)->data = NULL;						\
} while (0)

#define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])

#define heap_sift(h, i, cmp)						\
do {									\
	size_t _r, _j = i;						\
									\
	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
		_r = _j * 2 + 1;					\
		if (_r + 1 < (h)->used &&				\
		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
			_r++;						\
									\
		if (cmp((h)->data[_r], (h)->data[_j]))			\
			break;						\
		heap_swap(h, _r, _j);					\
	}								\
} while (0)

#define heap_sift_down(h, i, cmp)					\
do {									\
	while (i) {							\
		size_t p = (i - 1) / 2;					\
		if (cmp((h)->data[i], (h)->data[p]))			\
			break;						\
		heap_swap(h, i, p);					\
		i = p;							\
	}								\
} while (0)

#define heap_add(h, d, cmp)						\
({									\
	bool _r = !heap_full(h);					\
	if (_r) {							\
		size_t _i = (h)->used++;				\
		(h)->data[_i] = d;					\
									\
		heap_sift_down(h, _i, cmp);				\
		heap_sift(h, _i, cmp);					\
	}								\
	_r;								\
})

#define heap_pop(h, d, cmp)						\
({									\
	bool _r = (h)->used;						\
	if (_r) {							\
		(d) = (h)->data[0];					\
		(h)->used--;						\
		heap_swap(h, 0, (h)->used);				\
		heap_sift(h, 0, cmp);					\
	}								\
	_r;								\
})

#define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)

#define heap_full(h)	((h)->used == (h)->size)

#define DECLARE_FIFO(type, name)					\
	struct {							\
		size_t front, back, size, mask;				\
		type *data;						\
	} name

#define fifo_for_each(c, fifo, iter)					\
	for (iter = (fifo)->front;					\
	     c = (fifo)->data[iter], iter != (fifo)->back;		\
	     iter = (iter + 1) & (fifo)->mask)

#define __init_fifo(fifo, gfp)						\
({									\
	size_t _allocated_size, _bytes;					\
	BUG_ON(!(fifo)->size);						\
									\
	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
									\
	(fifo)->mask = _allocated_size - 1;				\
	(fifo)->front = (fifo)->back = 0;				\
									\
	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
	(fifo)->data;							\
})

#define init_fifo_exact(fifo, _size, gfp)				\
({									\
	(fifo)->size = (_size);						\
	__init_fifo(fifo, gfp);						\
})

#define init_fifo(fifo, _size, gfp)					\
({									\
	(fifo)->size = (_size);						\
	if ((fifo)->size > 4)						\
		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
	__init_fifo(fifo, gfp);						\
})

#define free_fifo(fifo)							\
do {									\
	kvfree((fifo)->data);						\
	(fifo)->data = NULL;						\
} while (0)

#define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
#define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))

#define fifo_empty(fifo)	(!fifo_used(fifo))
#define fifo_full(fifo)		(!fifo_free(fifo))

#define fifo_front(fifo)	((fifo)->data[(fifo)->front])
#define fifo_back(fifo)							\
	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])

#define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)

#define fifo_push_back(fifo, i)						\
({									\
	bool _r = !fifo_full((fifo));					\
	if (_r) {							\
		(fifo)->data[(fifo)->back++] = (i);			\
		(fifo)->back &= (fifo)->mask;				\
	}								\
	_r;								\
})

#define fifo_pop_front(fifo, i)						\
({									\
	bool _r = !fifo_empty((fifo));					\
	if (_r) {							\
		(i) = (fifo)->data[(fifo)->front++];			\
		(fifo)->front &= (fifo)->mask;				\
	}								\
	_r;								\
})

#define fifo_push_front(fifo, i)					\
({									\
	bool _r = !fifo_full((fifo));					\
	if (_r) {							\
		--(fifo)->front;					\
		(fifo)->front &= (fifo)->mask;				\
		(fifo)->data[(fifo)->front] = (i);			\
	}								\
	_r;								\
})

#define fifo_pop_back(fifo, i)						\
({									\
	bool _r = !fifo_empty((fifo));					\
	if (_r) {							\
		--(fifo)->back;						\
		(fifo)->back &= (fifo)->mask;				\
		(i) = (fifo)->data[(fifo)->back]			\
	}								\
	_r;								\
})

#define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
#define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))

#define fifo_swap(l, r)							\
do {									\
	swap((l)->front, (r)->front);					\
	swap((l)->back, (r)->back);					\
	swap((l)->size, (r)->size);					\
	swap((l)->mask, (r)->mask);					\
	swap((l)->data, (r)->data);					\
} while (0)

#define fifo_move(dest, src)						\
do {									\
	typeof(*((dest)->data)) _t;					\
	while (!fifo_full(dest) &&					\
	       fifo_pop(src, _t))					\
		fifo_push(dest, _t);					\
} while (0)

/*
 * Simple array based allocator - preallocates a number of elements and you can
 * never allocate more than that, also has no locking.
 *
 * Handy because if you know you only need a fixed number of elements you don't
 * have to worry about memory allocation failure, and sometimes a mempool isn't
 * what you want.
 *
 * We treat the free elements as entries in a singly linked list, and the
 * freelist as a stack - allocating and freeing push and pop off the freelist.
 */

#define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
	struct {							\
		type	*freelist;					\
		type	data[size];					\
	} name

#define array_alloc(array)						\
({									\
	typeof((array)->freelist) _ret = (array)->freelist;		\
									\
	if (_ret)							\
		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
									\
	_ret;								\
})

#define array_free(array, ptr)						\
do {									\
	typeof((array)->freelist) _ptr = ptr;				\
									\
	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
	(array)->freelist = _ptr;					\
} while (0)

#define array_allocator_init(array)					\
do {									\
	typeof((array)->freelist) _i;					\
									\
	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
	(array)->freelist = NULL;					\
									\
	for (_i = (array)->data;					\
	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
	     _i++)							\
		array_free(array, _i);					\
} while (0)

#define array_freelist_empty(array)	((array)->freelist == NULL)

#define ANYSINT_MAX(t)							\
	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)

int bch_strtoint_h(const char *cp, int *res);
int bch_strtouint_h(const char *cp, unsigned int *res);
int bch_strtoll_h(const char *cp, long long *res);
int bch_strtoull_h(const char *cp, unsigned long long *res);

static inline int bch_strtol_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
	return bch_strtoint_h(cp, (int *) res);
#else
	return bch_strtoll_h(cp, (long long *) res);
#endif
}

static inline int bch_strtoul_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
	return bch_strtouint_h(cp, (unsigned int *) res);
#else
	return bch_strtoull_h(cp, (unsigned long long *) res);
#endif
}

#define strtoi_h(cp, res)						\
	(__builtin_types_compatible_p(typeof(*res), int)		\
	? bch_strtoint_h(cp, (void *) res)				\
	: __builtin_types_compatible_p(typeof(*res), long)		\
	? bch_strtol_h(cp, (void *) res)				\
	: __builtin_types_compatible_p(typeof(*res), long long)		\
	? bch_strtoll_h(cp, (void *) res)				\
	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
	? bch_strtouint_h(cp, (void *) res)				\
	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
	? bch_strtoul_h(cp, (void *) res)				\
	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
	? bch_strtoull_h(cp, (void *) res) : -EINVAL)

#define strtoul_safe(cp, var)						\
({									\
	unsigned long _v;						\
	int _r = kstrtoul(cp, 10, &_v);					\
	if (!_r)							\
		var = _v;						\
	_r;								\
})

#define strtoul_safe_clamp(cp, var, min, max)				\
({									\
	unsigned long _v;						\
	int _r = kstrtoul(cp, 10, &_v);					\
	if (!_r)							\
		var = clamp_t(typeof(var), _v, min, max);		\
	_r;								\
})

ssize_t bch_hprint(char *buf, int64_t v);

bool bch_is_zero(const char *p, size_t n);
int bch_parse_uuid(const char *s, char *uuid);

struct time_stats {
	spinlock_t	lock;
	/*
	 * all fields are in nanoseconds, averages are ewmas stored left shifted
	 * by 8
	 */
	uint64_t	max_duration;
	uint64_t	average_duration;
	uint64_t	average_frequency;
	uint64_t	last;
};

void bch_time_stats_update(struct time_stats *stats, uint64_t time);

static inline unsigned int local_clock_us(void)
{
	return local_clock() >> 10;
}

#define NSEC_PER_ns			1L
#define NSEC_PER_us			NSEC_PER_USEC
#define NSEC_PER_ms			NSEC_PER_MSEC
#define NSEC_PER_sec			NSEC_PER_SEC

#define __print_time_stat(stats, name, stat, units)			\
	sysfs_print(name ## _ ## stat ## _ ## units,			\
		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))

#define sysfs_print_time_stats(stats, name,				\
			       frequency_units,				\
			       duration_units)				\
do {									\
	__print_time_stat(stats, name,					\
			  average_frequency,	frequency_units);	\
	__print_time_stat(stats, name,					\
			  average_duration,	duration_units);	\
	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
			div_u64((stats)->max_duration,			\
				NSEC_PER_ ## duration_units));		\
									\
	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
		    ? div_s64(local_clock() - (stats)->last,		\
			      NSEC_PER_ ## frequency_units)		\
		    : -1LL);						\
} while (0)

#define sysfs_time_stats_attribute(name,				\
				   frequency_units,			\
				   duration_units)			\
read_attribute(name ## _average_frequency_ ## frequency_units);		\
read_attribute(name ## _average_duration_ ## duration_units);		\
read_attribute(name ## _max_duration_ ## duration_units);		\
read_attribute(name ## _last_ ## frequency_units)

#define sysfs_time_stats_attribute_list(name,				\
					frequency_units,		\
					duration_units)			\
&sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
&sysfs_ ## name ## _average_duration_ ## duration_units,		\
&sysfs_ ## name ## _max_duration_ ## duration_units,			\
&sysfs_ ## name ## _last_ ## frequency_units,

#define ewma_add(ewma, val, weight, factor)				\
({									\
	(ewma) *= (weight) - 1;						\
	(ewma) += (val) << factor;					\
	(ewma) /= (weight);						\
	(ewma) >> factor;						\
})

struct bch_ratelimit {
	/* Next time we want to do some work, in nanoseconds */
	uint64_t		next;

	/*
	 * Rate at which we want to do work, in units per second
	 * The units here correspond to the units passed to bch_next_delay()
	 */
	atomic_long_t		rate;
};

static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
{
	d->next = local_clock();
}

uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);

#define __DIV_SAFE(n, d, zero)						\
({									\
	typeof(n) _n = (n);						\
	typeof(d) _d = (d);						\
	_d ? _n / _d : zero;						\
})

#define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)

#define container_of_or_null(ptr, type, member)				\
({									\
	typeof(ptr) _ptr = ptr;						\
	_ptr ? container_of(_ptr, type, member) : NULL;			\
})

#define RB_INSERT(root, new, member, cmp)				\
({									\
	__label__ dup;							\
	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
	typeof(new) this;						\
	int res, ret = -1;						\
									\
	while (*n) {							\
		parent = *n;						\
		this = container_of(*n, typeof(*(new)), member);	\
		res = cmp(new, this);					\
		if (!res)						\
			goto dup;					\
		n = res < 0						\
			? &(*n)->rb_left				\
			: &(*n)->rb_right;				\
	}								\
									\
	rb_link_node(&(new)->member, parent, n);			\
	rb_insert_color(&(new)->member, root);				\
	ret = 0;							\
dup:									\
	ret;								\
})

#define RB_SEARCH(root, search, member, cmp)				\
({									\
	struct rb_node *n = (root)->rb_node;				\
	typeof(&(search)) this, ret = NULL;				\
	int res;							\
									\
	while (n) {							\
		this = container_of(n, typeof(search), member);		\
		res = cmp(&(search), this);				\
		if (!res) {						\
			ret = this;					\
			break;						\
		}							\
		n = res < 0						\
			? n->rb_left					\
			: n->rb_right;					\
	}								\
	ret;								\
})

#define RB_GREATER(root, search, member, cmp)				\
({									\
	struct rb_node *n = (root)->rb_node;				\
	typeof(&(search)) this, ret = NULL;				\
	int res;							\
									\
	while (n) {							\
		this = container_of(n, typeof(search), member);		\
		res = cmp(&(search), this);				\
		if (res < 0) {						\
			ret = this;					\
			n = n->rb_left;					\
		} else							\
			n = n->rb_right;				\
	}								\
	ret;								\
})

#define RB_FIRST(root, type, member)					\
	container_of_or_null(rb_first(root), type, member)

#define RB_LAST(root, type, member)					\
	container_of_or_null(rb_last(root), type, member)

#define RB_NEXT(ptr, member)						\
	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)

#define RB_PREV(ptr, member)						\
	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)

static inline uint64_t bch_crc64(const void *p, size_t len)
{
	uint64_t crc = 0xffffffffffffffffULL;

	crc = crc64_be(crc, p, len);
	return crc ^ 0xffffffffffffffffULL;
}

/*
 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
 * frac_bits), with the less-significant bits filled in by linear
 * interpolation.
 *
 * This can also be interpreted as a floating-point number format,
 * where the low frac_bits are the mantissa (with implicit leading
 * 1 bit), and the more significant bits are the exponent.
 * The return value is 1.mantissa * 2^exponent.
 *
 * The way this is used, fract_bits is 6 and the largest possible
 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
 * so the maximum output is 0x1fc00.
 */
static inline unsigned int fract_exp_two(unsigned int x,
					 unsigned int fract_bits)
{
	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */

	mantissa += x & (mantissa - 1);
	x >>= fract_bits;	/* The exponent */
	/* Largest intermediate value 0x7f0000 */
	return mantissa << x >> fract_bits;
}

void bch_bio_map(struct bio *bio, void *base);
int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);

#endif /* _BCACHE_UTIL_H */