summaryrefslogtreecommitdiff
path: root/drivers/md/bcache/request.c
blob: 1a46b41dac7018bbf43e1dc610abeacab21cb7a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
// SPDX-License-Identifier: GPL-2.0
/*
 * Main bcache entry point - handle a read or a write request and decide what to
 * do with it; the make_request functions are called by the block layer.
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "request.h"
#include "writeback.h"

#include <linux/module.h>
#include <linux/hash.h>
#include <linux/random.h>
#include <linux/backing-dev.h>

#include <trace/events/bcache.h>

#define CUTOFF_CACHE_ADD	95
#define CUTOFF_CACHE_READA	90

struct kmem_cache *bch_search_cache;

static void bch_data_insert_start(struct closure *);

static unsigned cache_mode(struct cached_dev *dc)
{
	return BDEV_CACHE_MODE(&dc->sb);
}

static bool verify(struct cached_dev *dc)
{
	return dc->verify;
}

static void bio_csum(struct bio *bio, struct bkey *k)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	uint64_t csum = 0;

	bio_for_each_segment(bv, bio, iter) {
		void *d = kmap(bv.bv_page) + bv.bv_offset;
		csum = bch_crc64_update(csum, d, bv.bv_len);
		kunmap(bv.bv_page);
	}

	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
}

/* Insert data into cache */

static void bch_data_insert_keys(struct closure *cl)
{
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
	atomic_t *journal_ref = NULL;
	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
	int ret;

	/*
	 * If we're looping, might already be waiting on
	 * another journal write - can't wait on more than one journal write at
	 * a time
	 *
	 * XXX: this looks wrong
	 */
#if 0
	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
		closure_sync(&s->cl);
#endif

	if (!op->replace)
		journal_ref = bch_journal(op->c, &op->insert_keys,
					  op->flush_journal ? cl : NULL);

	ret = bch_btree_insert(op->c, &op->insert_keys,
			       journal_ref, replace_key);
	if (ret == -ESRCH) {
		op->replace_collision = true;
	} else if (ret) {
		op->status		= BLK_STS_RESOURCE;
		op->insert_data_done	= true;
	}

	if (journal_ref)
		atomic_dec_bug(journal_ref);

	if (!op->insert_data_done) {
		continue_at(cl, bch_data_insert_start, op->wq);
		return;
	}

	bch_keylist_free(&op->insert_keys);
	closure_return(cl);
}

static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
			       struct cache_set *c)
{
	size_t oldsize = bch_keylist_nkeys(l);
	size_t newsize = oldsize + u64s;

	/*
	 * The journalling code doesn't handle the case where the keys to insert
	 * is bigger than an empty write: If we just return -ENOMEM here,
	 * bio_insert() and bio_invalidate() will insert the keys created so far
	 * and finish the rest when the keylist is empty.
	 */
	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
		return -ENOMEM;

	return __bch_keylist_realloc(l, u64s);
}

static void bch_data_invalidate(struct closure *cl)
{
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
	struct bio *bio = op->bio;

	pr_debug("invalidating %i sectors from %llu",
		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);

	while (bio_sectors(bio)) {
		unsigned sectors = min(bio_sectors(bio),
				       1U << (KEY_SIZE_BITS - 1));

		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
			goto out;

		bio->bi_iter.bi_sector	+= sectors;
		bio->bi_iter.bi_size	-= sectors << 9;

		bch_keylist_add(&op->insert_keys,
				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
	}

	op->insert_data_done = true;
	bio_put(bio);
out:
	continue_at(cl, bch_data_insert_keys, op->wq);
}

static void bch_data_insert_error(struct closure *cl)
{
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);

	/*
	 * Our data write just errored, which means we've got a bunch of keys to
	 * insert that point to data that wasn't succesfully written.
	 *
	 * We don't have to insert those keys but we still have to invalidate
	 * that region of the cache - so, if we just strip off all the pointers
	 * from the keys we'll accomplish just that.
	 */

	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;

	while (src != op->insert_keys.top) {
		struct bkey *n = bkey_next(src);

		SET_KEY_PTRS(src, 0);
		memmove(dst, src, bkey_bytes(src));

		dst = bkey_next(dst);
		src = n;
	}

	op->insert_keys.top = dst;

	bch_data_insert_keys(cl);
}

static void bch_data_insert_endio(struct bio *bio)
{
	struct closure *cl = bio->bi_private;
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);

	if (bio->bi_status) {
		/* TODO: We could try to recover from this. */
		if (op->writeback)
			op->status = bio->bi_status;
		else if (!op->replace)
			set_closure_fn(cl, bch_data_insert_error, op->wq);
		else
			set_closure_fn(cl, NULL, NULL);
	}

	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
}

static void bch_data_insert_start(struct closure *cl)
{
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
	struct bio *bio = op->bio, *n;

	if (op->bypass)
		return bch_data_invalidate(cl);

	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
		wake_up_gc(op->c);

	/*
	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
	 * flush, it'll wait on the journal write.
	 */
	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);

	do {
		unsigned i;
		struct bkey *k;
		struct bio_set *split = op->c->bio_split;

		/* 1 for the device pointer and 1 for the chksum */
		if (bch_keylist_realloc(&op->insert_keys,
					3 + (op->csum ? 1 : 0),
					op->c)) {
			continue_at(cl, bch_data_insert_keys, op->wq);
			return;
		}

		k = op->insert_keys.top;
		bkey_init(k);
		SET_KEY_INODE(k, op->inode);
		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);

		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
				       op->write_point, op->write_prio,
				       op->writeback))
			goto err;

		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);

		n->bi_end_io	= bch_data_insert_endio;
		n->bi_private	= cl;

		if (op->writeback) {
			SET_KEY_DIRTY(k, true);

			for (i = 0; i < KEY_PTRS(k); i++)
				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
					    GC_MARK_DIRTY);
		}

		SET_KEY_CSUM(k, op->csum);
		if (KEY_CSUM(k))
			bio_csum(n, k);

		trace_bcache_cache_insert(k);
		bch_keylist_push(&op->insert_keys);

		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
		bch_submit_bbio(n, op->c, k, 0);
	} while (n != bio);

	op->insert_data_done = true;
	continue_at(cl, bch_data_insert_keys, op->wq);
	return;
err:
	/* bch_alloc_sectors() blocks if s->writeback = true */
	BUG_ON(op->writeback);

	/*
	 * But if it's not a writeback write we'd rather just bail out if
	 * there aren't any buckets ready to write to - it might take awhile and
	 * we might be starving btree writes for gc or something.
	 */

	if (!op->replace) {
		/*
		 * Writethrough write: We can't complete the write until we've
		 * updated the index. But we don't want to delay the write while
		 * we wait for buckets to be freed up, so just invalidate the
		 * rest of the write.
		 */
		op->bypass = true;
		return bch_data_invalidate(cl);
	} else {
		/*
		 * From a cache miss, we can just insert the keys for the data
		 * we have written or bail out if we didn't do anything.
		 */
		op->insert_data_done = true;
		bio_put(bio);

		if (!bch_keylist_empty(&op->insert_keys))
			continue_at(cl, bch_data_insert_keys, op->wq);
		else
			closure_return(cl);
	}
}

/**
 * bch_data_insert - stick some data in the cache
 *
 * This is the starting point for any data to end up in a cache device; it could
 * be from a normal write, or a writeback write, or a write to a flash only
 * volume - it's also used by the moving garbage collector to compact data in
 * mostly empty buckets.
 *
 * It first writes the data to the cache, creating a list of keys to be inserted
 * (if the data had to be fragmented there will be multiple keys); after the
 * data is written it calls bch_journal, and after the keys have been added to
 * the next journal write they're inserted into the btree.
 *
 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
 * and op->inode is used for the key inode.
 *
 * If s->bypass is true, instead of inserting the data it invalidates the
 * region of the cache represented by s->cache_bio and op->inode.
 */
void bch_data_insert(struct closure *cl)
{
	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);

	trace_bcache_write(op->c, op->inode, op->bio,
			   op->writeback, op->bypass);

	bch_keylist_init(&op->insert_keys);
	bio_get(op->bio);
	bch_data_insert_start(cl);
}

/* Congested? */

unsigned bch_get_congested(struct cache_set *c)
{
	int i;
	long rand;

	if (!c->congested_read_threshold_us &&
	    !c->congested_write_threshold_us)
		return 0;

	i = (local_clock_us() - c->congested_last_us) / 1024;
	if (i < 0)
		return 0;

	i += atomic_read(&c->congested);
	if (i >= 0)
		return 0;

	i += CONGESTED_MAX;

	if (i > 0)
		i = fract_exp_two(i, 6);

	rand = get_random_int();
	i -= bitmap_weight(&rand, BITS_PER_LONG);

	return i > 0 ? i : 1;
}

static void add_sequential(struct task_struct *t)
{
	ewma_add(t->sequential_io_avg,
		 t->sequential_io, 8, 0);

	t->sequential_io = 0;
}

static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
{
	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
}

static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
{
	struct cache_set *c = dc->disk.c;
	unsigned mode = cache_mode(dc);
	unsigned sectors, congested = bch_get_congested(c);
	struct task_struct *task = current;
	struct io *i;

	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
	    (bio_op(bio) == REQ_OP_DISCARD))
		goto skip;

	if (mode == CACHE_MODE_NONE ||
	    (mode == CACHE_MODE_WRITEAROUND &&
	     op_is_write(bio_op(bio))))
		goto skip;

	/*
	 * Flag for bypass if the IO is for read-ahead or background,
	 * unless the read-ahead request is for metadata (eg, for gfs2).
	 */
	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
	    !(bio->bi_opf & REQ_META))
		goto skip;

	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
	    bio_sectors(bio) & (c->sb.block_size - 1)) {
		pr_debug("skipping unaligned io");
		goto skip;
	}

	if (bypass_torture_test(dc)) {
		if ((get_random_int() & 3) == 3)
			goto skip;
		else
			goto rescale;
	}

	if (!congested && !dc->sequential_cutoff)
		goto rescale;

	spin_lock(&dc->io_lock);

	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
		if (i->last == bio->bi_iter.bi_sector &&
		    time_before(jiffies, i->jiffies))
			goto found;

	i = list_first_entry(&dc->io_lru, struct io, lru);

	add_sequential(task);
	i->sequential = 0;
found:
	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
		i->sequential	+= bio->bi_iter.bi_size;

	i->last			 = bio_end_sector(bio);
	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
	task->sequential_io	 = i->sequential;

	hlist_del(&i->hash);
	hlist_add_head(&i->hash, iohash(dc, i->last));
	list_move_tail(&i->lru, &dc->io_lru);

	spin_unlock(&dc->io_lock);

	sectors = max(task->sequential_io,
		      task->sequential_io_avg) >> 9;

	if (dc->sequential_cutoff &&
	    sectors >= dc->sequential_cutoff >> 9) {
		trace_bcache_bypass_sequential(bio);
		goto skip;
	}

	if (congested && sectors >= congested) {
		trace_bcache_bypass_congested(bio);
		goto skip;
	}

rescale:
	bch_rescale_priorities(c, bio_sectors(bio));
	return false;
skip:
	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
	return true;
}

/* Cache lookup */

struct search {
	/* Stack frame for bio_complete */
	struct closure		cl;

	struct bbio		bio;
	struct bio		*orig_bio;
	struct bio		*cache_miss;
	struct bcache_device	*d;

	unsigned		insert_bio_sectors;
	unsigned		recoverable:1;
	unsigned		write:1;
	unsigned		read_dirty_data:1;
	unsigned		cache_missed:1;

	unsigned long		start_time;

	struct btree_op		op;
	struct data_insert_op	iop;
};

static void bch_cache_read_endio(struct bio *bio)
{
	struct bbio *b = container_of(bio, struct bbio, bio);
	struct closure *cl = bio->bi_private;
	struct search *s = container_of(cl, struct search, cl);

	/*
	 * If the bucket was reused while our bio was in flight, we might have
	 * read the wrong data. Set s->error but not error so it doesn't get
	 * counted against the cache device, but we'll still reread the data
	 * from the backing device.
	 */

	if (bio->bi_status)
		s->iop.status = bio->bi_status;
	else if (!KEY_DIRTY(&b->key) &&
		 ptr_stale(s->iop.c, &b->key, 0)) {
		atomic_long_inc(&s->iop.c->cache_read_races);
		s->iop.status = BLK_STS_IOERR;
	}

	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
}

/*
 * Read from a single key, handling the initial cache miss if the key starts in
 * the middle of the bio
 */
static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
{
	struct search *s = container_of(op, struct search, op);
	struct bio *n, *bio = &s->bio.bio;
	struct bkey *bio_key;
	unsigned ptr;

	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
		return MAP_CONTINUE;

	if (KEY_INODE(k) != s->iop.inode ||
	    KEY_START(k) > bio->bi_iter.bi_sector) {
		unsigned bio_sectors = bio_sectors(bio);
		unsigned sectors = KEY_INODE(k) == s->iop.inode
			? min_t(uint64_t, INT_MAX,
				KEY_START(k) - bio->bi_iter.bi_sector)
			: INT_MAX;

		int ret = s->d->cache_miss(b, s, bio, sectors);
		if (ret != MAP_CONTINUE)
			return ret;

		/* if this was a complete miss we shouldn't get here */
		BUG_ON(bio_sectors <= sectors);
	}

	if (!KEY_SIZE(k))
		return MAP_CONTINUE;

	/* XXX: figure out best pointer - for multiple cache devices */
	ptr = 0;

	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;

	if (KEY_DIRTY(k))
		s->read_dirty_data = true;

	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
			   GFP_NOIO, s->d->bio_split);

	bio_key = &container_of(n, struct bbio, bio)->key;
	bch_bkey_copy_single_ptr(bio_key, k, ptr);

	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);

	n->bi_end_io	= bch_cache_read_endio;
	n->bi_private	= &s->cl;

	/*
	 * The bucket we're reading from might be reused while our bio
	 * is in flight, and we could then end up reading the wrong
	 * data.
	 *
	 * We guard against this by checking (in cache_read_endio()) if
	 * the pointer is stale again; if so, we treat it as an error
	 * and reread from the backing device (but we don't pass that
	 * error up anywhere).
	 */

	__bch_submit_bbio(n, b->c);
	return n == bio ? MAP_DONE : MAP_CONTINUE;
}

static void cache_lookup(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, iop.cl);
	struct bio *bio = &s->bio.bio;
	struct cached_dev *dc;
	int ret;

	bch_btree_op_init(&s->op, -1);

	ret = bch_btree_map_keys(&s->op, s->iop.c,
				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
				 cache_lookup_fn, MAP_END_KEY);
	if (ret == -EAGAIN) {
		continue_at(cl, cache_lookup, bcache_wq);
		return;
	}

	/*
	 * We might meet err when searching the btree, If that happens, we will
	 * get negative ret, in this scenario we should not recover data from
	 * backing device (when cache device is dirty) because we don't know
	 * whether bkeys the read request covered are all clean.
	 *
	 * And after that happened, s->iop.status is still its initial value
	 * before we submit s->bio.bio
	 */
	if (ret < 0) {
		BUG_ON(ret == -EINTR);
		if (s->d && s->d->c &&
				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
			dc = container_of(s->d, struct cached_dev, disk);
			if (dc && atomic_read(&dc->has_dirty))
				s->recoverable = false;
		}
		if (!s->iop.status)
			s->iop.status = BLK_STS_IOERR;
	}

	closure_return(cl);
}

/* Common code for the make_request functions */

static void request_endio(struct bio *bio)
{
	struct closure *cl = bio->bi_private;

	if (bio->bi_status) {
		struct search *s = container_of(cl, struct search, cl);
		s->iop.status = bio->bi_status;
		/* Only cache read errors are recoverable */
		s->recoverable = false;
	}

	bio_put(bio);
	closure_put(cl);
}

static void bio_complete(struct search *s)
{
	if (s->orig_bio) {
		generic_end_io_acct(s->d->disk->queue,
				    bio_data_dir(s->orig_bio),
				    &s->d->disk->part0, s->start_time);

		trace_bcache_request_end(s->d, s->orig_bio);
		s->orig_bio->bi_status = s->iop.status;
		bio_endio(s->orig_bio);
		s->orig_bio = NULL;
	}
}

static void do_bio_hook(struct search *s, struct bio *orig_bio)
{
	struct bio *bio = &s->bio.bio;

	bio_init(bio, NULL, 0);
	__bio_clone_fast(bio, orig_bio);
	bio->bi_end_io		= request_endio;
	bio->bi_private		= &s->cl;

	bio_cnt_set(bio, 3);
}

static void search_free(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	bio_complete(s);

	if (s->iop.bio)
		bio_put(s->iop.bio);

	closure_debug_destroy(cl);
	mempool_free(s, s->d->c->search);
}

static inline struct search *search_alloc(struct bio *bio,
					  struct bcache_device *d)
{
	struct search *s;

	s = mempool_alloc(d->c->search, GFP_NOIO);

	closure_init(&s->cl, NULL);
	do_bio_hook(s, bio);

	s->orig_bio		= bio;
	s->cache_miss		= NULL;
	s->cache_missed		= 0;
	s->d			= d;
	s->recoverable		= 1;
	s->write		= op_is_write(bio_op(bio));
	s->read_dirty_data	= 0;
	s->start_time		= jiffies;

	s->iop.c		= d->c;
	s->iop.bio		= NULL;
	s->iop.inode		= d->id;
	s->iop.write_point	= hash_long((unsigned long) current, 16);
	s->iop.write_prio	= 0;
	s->iop.status		= 0;
	s->iop.flags		= 0;
	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
	s->iop.wq		= bcache_wq;

	return s;
}

/* Cached devices */

static void cached_dev_bio_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	search_free(cl);
	cached_dev_put(dc);
}

/* Process reads */

static void cached_dev_cache_miss_done(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);

	if (s->iop.replace_collision)
		bch_mark_cache_miss_collision(s->iop.c, s->d);

	if (s->iop.bio)
		bio_free_pages(s->iop.bio);

	cached_dev_bio_complete(cl);
}

static void cached_dev_read_error(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct bio *bio = &s->bio.bio;

	/*
	 * If read request hit dirty data (s->read_dirty_data is true),
	 * then recovery a failed read request from cached device may
	 * get a stale data back. So read failure recovery is only
	 * permitted when read request hit clean data in cache device,
	 * or when cache read race happened.
	 */
	if (s->recoverable && !s->read_dirty_data) {
		/* Retry from the backing device: */
		trace_bcache_read_retry(s->orig_bio);

		s->iop.status = 0;
		do_bio_hook(s, s->orig_bio);

		/* XXX: invalidate cache */

		closure_bio_submit(bio, cl);
	}

	continue_at(cl, cached_dev_cache_miss_done, NULL);
}

static void cached_dev_read_done(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	/*
	 * We had a cache miss; cache_bio now contains data ready to be inserted
	 * into the cache.
	 *
	 * First, we copy the data we just read from cache_bio's bounce buffers
	 * to the buffers the original bio pointed to:
	 */

	if (s->iop.bio) {
		bio_reset(s->iop.bio);
		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
		bio_copy_dev(s->iop.bio, s->cache_miss);
		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
		bch_bio_map(s->iop.bio, NULL);

		bio_copy_data(s->cache_miss, s->iop.bio);

		bio_put(s->cache_miss);
		s->cache_miss = NULL;
	}

	if (verify(dc) && s->recoverable && !s->read_dirty_data)
		bch_data_verify(dc, s->orig_bio);

	bio_complete(s);

	if (s->iop.bio &&
	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
		BUG_ON(!s->iop.replace);
		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
	}

	continue_at(cl, cached_dev_cache_miss_done, NULL);
}

static void cached_dev_read_done_bh(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	bch_mark_cache_accounting(s->iop.c, s->d,
				  !s->cache_missed, s->iop.bypass);
	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);

	if (s->iop.status)
		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
	else if (s->iop.bio || verify(dc))
		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
	else
		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
}

static int cached_dev_cache_miss(struct btree *b, struct search *s,
				 struct bio *bio, unsigned sectors)
{
	int ret = MAP_CONTINUE;
	unsigned reada = 0;
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
	struct bio *miss, *cache_bio;

	s->cache_missed = 1;

	if (s->cache_miss || s->iop.bypass) {
		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
		goto out_submit;
	}

	if (!(bio->bi_opf & REQ_RAHEAD) &&
	    !(bio->bi_opf & REQ_META) &&
	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
		reada = min_t(sector_t, dc->readahead >> 9,
			      get_capacity(bio->bi_disk) - bio_end_sector(bio));

	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);

	s->iop.replace_key = KEY(s->iop.inode,
				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
				 s->insert_bio_sectors);

	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
	if (ret)
		return ret;

	s->iop.replace = true;

	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);

	/* btree_search_recurse()'s btree iterator is no good anymore */
	ret = miss == bio ? MAP_DONE : -EINTR;

	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
			dc->disk.bio_split);
	if (!cache_bio)
		goto out_submit;

	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
	bio_copy_dev(cache_bio, miss);
	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;

	cache_bio->bi_end_io	= request_endio;
	cache_bio->bi_private	= &s->cl;

	bch_bio_map(cache_bio, NULL);
	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
		goto out_put;

	if (reada)
		bch_mark_cache_readahead(s->iop.c, s->d);

	s->cache_miss	= miss;
	s->iop.bio	= cache_bio;
	bio_get(cache_bio);
	closure_bio_submit(cache_bio, &s->cl);

	return ret;
out_put:
	bio_put(cache_bio);
out_submit:
	miss->bi_end_io		= request_endio;
	miss->bi_private	= &s->cl;
	closure_bio_submit(miss, &s->cl);
	return ret;
}

static void cached_dev_read(struct cached_dev *dc, struct search *s)
{
	struct closure *cl = &s->cl;

	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
	continue_at(cl, cached_dev_read_done_bh, NULL);
}

/* Process writes */

static void cached_dev_write_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	up_read_non_owner(&dc->writeback_lock);
	cached_dev_bio_complete(cl);
}

static void cached_dev_write(struct cached_dev *dc, struct search *s)
{
	struct closure *cl = &s->cl;
	struct bio *bio = &s->bio.bio;
	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);

	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);

	down_read_non_owner(&dc->writeback_lock);
	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
		/*
		 * We overlap with some dirty data undergoing background
		 * writeback, force this write to writeback
		 */
		s->iop.bypass = false;
		s->iop.writeback = true;
	}

	/*
	 * Discards aren't _required_ to do anything, so skipping if
	 * check_overlapping returned true is ok
	 *
	 * But check_overlapping drops dirty keys for which io hasn't started,
	 * so we still want to call it.
	 */
	if (bio_op(bio) == REQ_OP_DISCARD)
		s->iop.bypass = true;

	if (should_writeback(dc, s->orig_bio,
			     cache_mode(dc),
			     s->iop.bypass)) {
		s->iop.bypass = false;
		s->iop.writeback = true;
	}

	if (s->iop.bypass) {
		s->iop.bio = s->orig_bio;
		bio_get(s->iop.bio);

		if ((bio_op(bio) != REQ_OP_DISCARD) ||
		    blk_queue_discard(bdev_get_queue(dc->bdev)))
			closure_bio_submit(bio, cl);
	} else if (s->iop.writeback) {
		bch_writeback_add(dc);
		s->iop.bio = bio;

		if (bio->bi_opf & REQ_PREFLUSH) {
			/* Also need to send a flush to the backing device */
			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
							     dc->disk.bio_split);

			bio_copy_dev(flush, bio);
			flush->bi_end_io = request_endio;
			flush->bi_private = cl;
			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;

			closure_bio_submit(flush, cl);
		}
	} else {
		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);

		closure_bio_submit(bio, cl);
	}

	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
	continue_at(cl, cached_dev_write_complete, NULL);
}

static void cached_dev_nodata(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct bio *bio = &s->bio.bio;

	if (s->iop.flush_journal)
		bch_journal_meta(s->iop.c, cl);

	/* If it's a flush, we send the flush to the backing device too */
	closure_bio_submit(bio, cl);

	continue_at(cl, cached_dev_bio_complete, NULL);
}

/* Cached devices - read & write stuff */

static blk_qc_t cached_dev_make_request(struct request_queue *q,
					struct bio *bio)
{
	struct search *s;
	struct bcache_device *d = bio->bi_disk->private_data;
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	int rw = bio_data_dir(bio);

	atomic_set(&dc->backing_idle, 0);
	generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);

	bio_set_dev(bio, dc->bdev);
	bio->bi_iter.bi_sector += dc->sb.data_offset;

	if (cached_dev_get(dc)) {
		s = search_alloc(bio, d);
		trace_bcache_request_start(s->d, bio);

		if (!bio->bi_iter.bi_size) {
			/*
			 * can't call bch_journal_meta from under
			 * generic_make_request
			 */
			continue_at_nobarrier(&s->cl,
					      cached_dev_nodata,
					      bcache_wq);
		} else {
			s->iop.bypass = check_should_bypass(dc, bio);

			if (rw)
				cached_dev_write(dc, s);
			else
				cached_dev_read(dc, s);
		}
	} else {
		if ((bio_op(bio) == REQ_OP_DISCARD) &&
		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
			bio_endio(bio);
		else
			generic_make_request(bio);
	}

	return BLK_QC_T_NONE;
}

static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
			    unsigned int cmd, unsigned long arg)
{
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
}

static int cached_dev_congested(void *data, int bits)
{
	struct bcache_device *d = data;
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	struct request_queue *q = bdev_get_queue(dc->bdev);
	int ret = 0;

	if (bdi_congested(q->backing_dev_info, bits))
		return 1;

	if (cached_dev_get(dc)) {
		unsigned i;
		struct cache *ca;

		for_each_cache(ca, d->c, i) {
			q = bdev_get_queue(ca->bdev);
			ret |= bdi_congested(q->backing_dev_info, bits);
		}

		cached_dev_put(dc);
	}

	return ret;
}

void bch_cached_dev_request_init(struct cached_dev *dc)
{
	struct gendisk *g = dc->disk.disk;

	g->queue->make_request_fn		= cached_dev_make_request;
	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
	dc->disk.cache_miss			= cached_dev_cache_miss;
	dc->disk.ioctl				= cached_dev_ioctl;
}

/* Flash backed devices */

static int flash_dev_cache_miss(struct btree *b, struct search *s,
				struct bio *bio, unsigned sectors)
{
	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;

	swap(bio->bi_iter.bi_size, bytes);
	zero_fill_bio(bio);
	swap(bio->bi_iter.bi_size, bytes);

	bio_advance(bio, bytes);

	if (!bio->bi_iter.bi_size)
		return MAP_DONE;

	return MAP_CONTINUE;
}

static void flash_dev_nodata(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);

	if (s->iop.flush_journal)
		bch_journal_meta(s->iop.c, cl);

	continue_at(cl, search_free, NULL);
}

static blk_qc_t flash_dev_make_request(struct request_queue *q,
					     struct bio *bio)
{
	struct search *s;
	struct closure *cl;
	struct bcache_device *d = bio->bi_disk->private_data;
	int rw = bio_data_dir(bio);

	generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);

	s = search_alloc(bio, d);
	cl = &s->cl;
	bio = &s->bio.bio;

	trace_bcache_request_start(s->d, bio);

	if (!bio->bi_iter.bi_size) {
		/*
		 * can't call bch_journal_meta from under
		 * generic_make_request
		 */
		continue_at_nobarrier(&s->cl,
				      flash_dev_nodata,
				      bcache_wq);
		return BLK_QC_T_NONE;
	} else if (rw) {
		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
					&KEY(d->id, bio->bi_iter.bi_sector, 0),
					&KEY(d->id, bio_end_sector(bio), 0));

		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
		s->iop.writeback	= true;
		s->iop.bio		= bio;

		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
	} else {
		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
	}

	continue_at(cl, search_free, NULL);
	return BLK_QC_T_NONE;
}

static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
			   unsigned int cmd, unsigned long arg)
{
	return -ENOTTY;
}

static int flash_dev_congested(void *data, int bits)
{
	struct bcache_device *d = data;
	struct request_queue *q;
	struct cache *ca;
	unsigned i;
	int ret = 0;

	for_each_cache(ca, d->c, i) {
		q = bdev_get_queue(ca->bdev);
		ret |= bdi_congested(q->backing_dev_info, bits);
	}

	return ret;
}

void bch_flash_dev_request_init(struct bcache_device *d)
{
	struct gendisk *g = d->disk;

	g->queue->make_request_fn		= flash_dev_make_request;
	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
	d->cache_miss				= flash_dev_cache_miss;
	d->ioctl				= flash_dev_ioctl;
}

void bch_request_exit(void)
{
	if (bch_search_cache)
		kmem_cache_destroy(bch_search_cache);
}

int __init bch_request_init(void)
{
	bch_search_cache = KMEM_CACHE(search, 0);
	if (!bch_search_cache)
		return -ENOMEM;

	return 0;
}