1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
|
/*
* Copyright (c) 2014 Intel Corporation
*
* Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Datasheet:
* https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
* https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
* https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
*/
#define pr_fmt(fmt) "bmp280: " fmt
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#include "bmp280.h"
struct bmp280_data {
struct device *dev;
struct mutex lock;
struct regmap *regmap;
const struct bmp280_chip_info *chip_info;
struct regulator *vddd;
struct regulator *vdda;
unsigned int start_up_time; /* in milliseconds */
/* log of base 2 of oversampling rate */
u8 oversampling_press;
u8 oversampling_temp;
u8 oversampling_humid;
/*
* Carryover value from temperature conversion, used in pressure
* calculation.
*/
s32 t_fine;
};
struct bmp280_chip_info {
const int *oversampling_temp_avail;
int num_oversampling_temp_avail;
const int *oversampling_press_avail;
int num_oversampling_press_avail;
const int *oversampling_humid_avail;
int num_oversampling_humid_avail;
int (*chip_config)(struct bmp280_data *);
int (*read_temp)(struct bmp280_data *, int *);
int (*read_press)(struct bmp280_data *, int *, int *);
int (*read_humid)(struct bmp280_data *, int *, int *);
};
/*
* These enums are used for indexing into the array of compensation
* parameters for BMP280.
*/
enum { T1, T2, T3 };
enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
static const struct iio_chan_spec bmp280_channels[] = {
{
.type = IIO_PRESSURE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
},
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
},
{
.type = IIO_HUMIDITYRELATIVE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
},
};
/*
* Returns humidity in percent, resolution is 0.01 percent. Output value of
* "47445" represents 47445/1024 = 46.333 %RH.
*
* Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
*/
static u32 bmp280_compensate_humidity(struct bmp280_data *data,
s32 adc_humidity)
{
struct device *dev = data->dev;
unsigned int H1, H3, tmp;
int H2, H4, H5, H6, ret, var;
ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
if (ret < 0) {
dev_err(dev, "failed to read H1 comp value\n");
return ret;
}
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
if (ret < 0) {
dev_err(dev, "failed to read H2 comp value\n");
return ret;
}
H2 = sign_extend32(le16_to_cpu(tmp), 15);
ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
if (ret < 0) {
dev_err(dev, "failed to read H3 comp value\n");
return ret;
}
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
if (ret < 0) {
dev_err(dev, "failed to read H4 comp value\n");
return ret;
}
H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
(be16_to_cpu(tmp) & 0xf), 11);
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
if (ret < 0) {
dev_err(dev, "failed to read H5 comp value\n");
return ret;
}
H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
if (ret < 0) {
dev_err(dev, "failed to read H6 comp value\n");
return ret;
}
H6 = sign_extend32(tmp, 7);
var = ((s32)data->t_fine) - 76800;
var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var)) + 16384) >> 15)
* (((((((var * H6) >> 10) * (((var * H3) >> 11) + 32768)) >> 10)
+ 2097152) * H2 + 8192) >> 14);
var -= ((((var >> 15) * (var >> 15)) >> 7) * H1) >> 4;
return var >> 12;
};
/*
* Returns temperature in DegC, resolution is 0.01 DegC. Output value of
* "5123" equals 51.23 DegC. t_fine carries fine temperature as global
* value.
*
* Taken from datasheet, Section 3.11.3, "Compensation formula".
*/
static s32 bmp280_compensate_temp(struct bmp280_data *data,
s32 adc_temp)
{
int ret;
s32 var1, var2;
__le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
buf, BMP280_COMP_TEMP_REG_COUNT);
if (ret < 0) {
dev_err(data->dev,
"failed to read temperature calibration parameters\n");
return ret;
}
/*
* The double casts are necessary because le16_to_cpu returns an
* unsigned 16-bit value. Casting that value directly to a
* signed 32-bit will not do proper sign extension.
*
* Conversely, T1 and P1 are unsigned values, so they can be
* cast straight to the larger type.
*/
var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
data->t_fine = var1 + var2;
return (data->t_fine * 5 + 128) >> 8;
}
/*
* Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
* integer bits and 8 fractional bits). Output value of "24674867"
* represents 24674867/256 = 96386.2 Pa = 963.862 hPa
*
* Taken from datasheet, Section 3.11.3, "Compensation formula".
*/
static u32 bmp280_compensate_press(struct bmp280_data *data,
s32 adc_press)
{
int ret;
s64 var1, var2, p;
__le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
buf, BMP280_COMP_PRESS_REG_COUNT);
if (ret < 0) {
dev_err(data->dev,
"failed to read pressure calibration parameters\n");
return ret;
}
var1 = ((s64)data->t_fine) - 128000;
var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
if (var1 == 0)
return 0;
p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
p = div64_s64(p, var1);
var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
return (u32)p;
}
static int bmp280_read_temp(struct bmp280_data *data,
int *val)
{
int ret;
__be32 tmp = 0;
s32 adc_temp, comp_temp;
ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
(u8 *) &tmp, 3);
if (ret < 0) {
dev_err(data->dev, "failed to read temperature\n");
return ret;
}
adc_temp = be32_to_cpu(tmp) >> 12;
comp_temp = bmp280_compensate_temp(data, adc_temp);
/*
* val might be NULL if we're called by the read_press routine,
* who only cares about the carry over t_fine value.
*/
if (val) {
*val = comp_temp * 10;
return IIO_VAL_INT;
}
return 0;
}
static int bmp280_read_press(struct bmp280_data *data,
int *val, int *val2)
{
int ret;
__be32 tmp = 0;
s32 adc_press;
u32 comp_press;
/* Read and compensate temperature so we get a reading of t_fine. */
ret = bmp280_read_temp(data, NULL);
if (ret < 0)
return ret;
ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
(u8 *) &tmp, 3);
if (ret < 0) {
dev_err(data->dev, "failed to read pressure\n");
return ret;
}
adc_press = be32_to_cpu(tmp) >> 12;
comp_press = bmp280_compensate_press(data, adc_press);
*val = comp_press;
*val2 = 256000;
return IIO_VAL_FRACTIONAL;
}
static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
{
int ret;
__be16 tmp = 0;
s32 adc_humidity;
u32 comp_humidity;
/* Read and compensate temperature so we get a reading of t_fine. */
ret = bmp280_read_temp(data, NULL);
if (ret < 0)
return ret;
ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
(u8 *) &tmp, 2);
if (ret < 0) {
dev_err(data->dev, "failed to read humidity\n");
return ret;
}
adc_humidity = be16_to_cpu(tmp);
comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
*val = comp_humidity;
*val2 = 1024;
return IIO_VAL_FRACTIONAL;
}
static int bmp280_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret;
struct bmp280_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_HUMIDITYRELATIVE:
ret = data->chip_info->read_humid(data, val, val2);
break;
case IIO_PRESSURE:
ret = data->chip_info->read_press(data, val, val2);
break;
case IIO_TEMP:
ret = data->chip_info->read_temp(data, val);
break;
default:
ret = -EINVAL;
break;
}
break;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->type) {
case IIO_HUMIDITYRELATIVE:
*val = 1 << data->oversampling_humid;
ret = IIO_VAL_INT;
break;
case IIO_PRESSURE:
*val = 1 << data->oversampling_press;
ret = IIO_VAL_INT;
break;
case IIO_TEMP:
*val = 1 << data->oversampling_temp;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
break;
}
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&data->lock);
return ret;
}
static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
int val)
{
int i;
const int *avail = data->chip_info->oversampling_humid_avail;
const int n = data->chip_info->num_oversampling_humid_avail;
for (i = 0; i < n; i++) {
if (avail[i] == val) {
data->oversampling_humid = ilog2(val);
return data->chip_info->chip_config(data);
}
}
return -EINVAL;
}
static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
int val)
{
int i;
const int *avail = data->chip_info->oversampling_temp_avail;
const int n = data->chip_info->num_oversampling_temp_avail;
for (i = 0; i < n; i++) {
if (avail[i] == val) {
data->oversampling_temp = ilog2(val);
return data->chip_info->chip_config(data);
}
}
return -EINVAL;
}
static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
int val)
{
int i;
const int *avail = data->chip_info->oversampling_press_avail;
const int n = data->chip_info->num_oversampling_press_avail;
for (i = 0; i < n; i++) {
if (avail[i] == val) {
data->oversampling_press = ilog2(val);
return data->chip_info->chip_config(data);
}
}
return -EINVAL;
}
static int bmp280_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
int ret = 0;
struct bmp280_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
mutex_lock(&data->lock);
switch (chan->type) {
case IIO_HUMIDITYRELATIVE:
ret = bmp280_write_oversampling_ratio_humid(data, val);
break;
case IIO_PRESSURE:
ret = bmp280_write_oversampling_ratio_press(data, val);
break;
case IIO_TEMP:
ret = bmp280_write_oversampling_ratio_temp(data, val);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&data->lock);
break;
default:
return -EINVAL;
}
return ret;
}
static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
{
size_t len = 0;
int i;
for (i = 0; i < n; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
buf[len - 1] = '\n';
return len;
}
static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
data->chip_info->num_oversampling_temp_avail);
}
static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
data->chip_info->num_oversampling_press_avail);
}
static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
static struct attribute *bmp280_attributes[] = {
&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmp280_attrs_group = {
.attrs = bmp280_attributes,
};
static const struct iio_info bmp280_info = {
.driver_module = THIS_MODULE,
.read_raw = &bmp280_read_raw,
.write_raw = &bmp280_write_raw,
.attrs = &bmp280_attrs_group,
};
static int bmp280_chip_config(struct bmp280_data *data)
{
int ret;
u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS,
BMP280_OSRS_TEMP_MASK |
BMP280_OSRS_PRESS_MASK |
BMP280_MODE_MASK,
osrs | BMP280_MODE_NORMAL);
if (ret < 0) {
dev_err(data->dev,
"failed to write ctrl_meas register\n");
return ret;
}
ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
BMP280_FILTER_MASK,
BMP280_FILTER_4X);
if (ret < 0) {
dev_err(data->dev,
"failed to write config register\n");
return ret;
}
return ret;
}
static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
static const struct bmp280_chip_info bmp280_chip_info = {
.oversampling_temp_avail = bmp280_oversampling_avail,
.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
.oversampling_press_avail = bmp280_oversampling_avail,
.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
.chip_config = bmp280_chip_config,
.read_temp = bmp280_read_temp,
.read_press = bmp280_read_press,
};
static int bme280_chip_config(struct bmp280_data *data)
{
int ret = bmp280_chip_config(data);
u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
if (ret < 0)
return ret;
return regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
BMP280_OSRS_HUMIDITY_MASK, osrs);
}
static const struct bmp280_chip_info bme280_chip_info = {
.oversampling_temp_avail = bmp280_oversampling_avail,
.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
.oversampling_press_avail = bmp280_oversampling_avail,
.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
.oversampling_humid_avail = bmp280_oversampling_avail,
.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
.chip_config = bme280_chip_config,
.read_temp = bmp280_read_temp,
.read_press = bmp280_read_press,
.read_humid = bmp280_read_humid,
};
static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
{
int ret;
const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
unsigned int delay_us;
unsigned int ctrl;
ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
if (ret)
return ret;
if (ctrl_meas == BMP180_MEAS_TEMP)
delay_us = 4500;
else
delay_us = conversion_time_max[data->oversampling_press];
usleep_range(delay_us, delay_us + 1000);
ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
if (ret)
return ret;
/* The value of this bit reset to "0" after conversion is complete */
if (ctrl & BMP180_MEAS_SCO)
return -EIO;
return 0;
}
static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
{
int ret;
__be16 tmp = 0;
ret = bmp180_measure(data, BMP180_MEAS_TEMP);
if (ret)
return ret;
ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
if (ret)
return ret;
*val = be16_to_cpu(tmp);
return 0;
}
/*
* These enums are used for indexing into the array of calibration
* coefficients for BMP180.
*/
enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
struct bmp180_calib {
s16 AC1;
s16 AC2;
s16 AC3;
u16 AC4;
u16 AC5;
u16 AC6;
s16 B1;
s16 B2;
s16 MB;
s16 MC;
s16 MD;
};
static int bmp180_read_calib(struct bmp280_data *data,
struct bmp180_calib *calib)
{
int ret;
int i;
__be16 buf[BMP180_REG_CALIB_COUNT / 2];
ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
sizeof(buf));
if (ret < 0)
return ret;
/* None of the words has the value 0 or 0xFFFF */
for (i = 0; i < ARRAY_SIZE(buf); i++) {
if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
return -EIO;
}
calib->AC1 = be16_to_cpu(buf[AC1]);
calib->AC2 = be16_to_cpu(buf[AC2]);
calib->AC3 = be16_to_cpu(buf[AC3]);
calib->AC4 = be16_to_cpu(buf[AC4]);
calib->AC5 = be16_to_cpu(buf[AC5]);
calib->AC6 = be16_to_cpu(buf[AC6]);
calib->B1 = be16_to_cpu(buf[B1]);
calib->B2 = be16_to_cpu(buf[B2]);
calib->MB = be16_to_cpu(buf[MB]);
calib->MC = be16_to_cpu(buf[MC]);
calib->MD = be16_to_cpu(buf[MD]);
return 0;
}
/*
* Returns temperature in DegC, resolution is 0.1 DegC.
* t_fine carries fine temperature as global value.
*
* Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
*/
static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
{
int ret;
s32 x1, x2;
struct bmp180_calib calib;
ret = bmp180_read_calib(data, &calib);
if (ret < 0) {
dev_err(data->dev,
"failed to read calibration coefficients\n");
return ret;
}
x1 = ((adc_temp - calib.AC6) * calib.AC5) >> 15;
x2 = (calib.MC << 11) / (x1 + calib.MD);
data->t_fine = x1 + x2;
return (data->t_fine + 8) >> 4;
}
static int bmp180_read_temp(struct bmp280_data *data, int *val)
{
int ret;
s32 adc_temp, comp_temp;
ret = bmp180_read_adc_temp(data, &adc_temp);
if (ret)
return ret;
comp_temp = bmp180_compensate_temp(data, adc_temp);
/*
* val might be NULL if we're called by the read_press routine,
* who only cares about the carry over t_fine value.
*/
if (val) {
*val = comp_temp * 100;
return IIO_VAL_INT;
}
return 0;
}
static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
{
int ret;
__be32 tmp = 0;
u8 oss = data->oversampling_press;
ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
if (ret)
return ret;
ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
if (ret)
return ret;
*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
return 0;
}
/*
* Returns pressure in Pa, resolution is 1 Pa.
*
* Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
*/
static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
{
int ret;
s32 x1, x2, x3, p;
s32 b3, b6;
u32 b4, b7;
s32 oss = data->oversampling_press;
struct bmp180_calib calib;
ret = bmp180_read_calib(data, &calib);
if (ret < 0) {
dev_err(data->dev,
"failed to read calibration coefficients\n");
return ret;
}
b6 = data->t_fine - 4000;
x1 = (calib.B2 * (b6 * b6 >> 12)) >> 11;
x2 = calib.AC2 * b6 >> 11;
x3 = x1 + x2;
b3 = ((((s32)calib.AC1 * 4 + x3) << oss) + 2) / 4;
x1 = calib.AC3 * b6 >> 13;
x2 = (calib.B1 * ((b6 * b6) >> 12)) >> 16;
x3 = (x1 + x2 + 2) >> 2;
b4 = calib.AC4 * (u32)(x3 + 32768) >> 15;
b7 = ((u32)adc_press - b3) * (50000 >> oss);
if (b7 < 0x80000000)
p = (b7 * 2) / b4;
else
p = (b7 / b4) * 2;
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
return p + ((x1 + x2 + 3791) >> 4);
}
static int bmp180_read_press(struct bmp280_data *data,
int *val, int *val2)
{
int ret;
s32 adc_press;
u32 comp_press;
/* Read and compensate temperature so we get a reading of t_fine. */
ret = bmp180_read_temp(data, NULL);
if (ret)
return ret;
ret = bmp180_read_adc_press(data, &adc_press);
if (ret)
return ret;
comp_press = bmp180_compensate_press(data, adc_press);
*val = comp_press;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
}
static int bmp180_chip_config(struct bmp280_data *data)
{
return 0;
}
static const int bmp180_oversampling_temp_avail[] = { 1 };
static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
static const struct bmp280_chip_info bmp180_chip_info = {
.oversampling_temp_avail = bmp180_oversampling_temp_avail,
.num_oversampling_temp_avail =
ARRAY_SIZE(bmp180_oversampling_temp_avail),
.oversampling_press_avail = bmp180_oversampling_press_avail,
.num_oversampling_press_avail =
ARRAY_SIZE(bmp180_oversampling_press_avail),
.chip_config = bmp180_chip_config,
.read_temp = bmp180_read_temp,
.read_press = bmp180_read_press,
};
int bmp280_common_probe(struct device *dev,
struct regmap *regmap,
unsigned int chip,
const char *name)
{
int ret;
struct iio_dev *indio_dev;
struct bmp280_data *data;
unsigned int chip_id;
struct gpio_desc *gpiod;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
mutex_init(&data->lock);
data->dev = dev;
indio_dev->dev.parent = dev;
indio_dev->name = name;
indio_dev->channels = bmp280_channels;
indio_dev->info = &bmp280_info;
indio_dev->modes = INDIO_DIRECT_MODE;
switch (chip) {
case BMP180_CHIP_ID:
indio_dev->num_channels = 2;
data->chip_info = &bmp180_chip_info;
data->oversampling_press = ilog2(8);
data->oversampling_temp = ilog2(1);
data->start_up_time = 10;
break;
case BMP280_CHIP_ID:
indio_dev->num_channels = 2;
data->chip_info = &bmp280_chip_info;
data->oversampling_press = ilog2(16);
data->oversampling_temp = ilog2(2);
data->start_up_time = 2;
break;
case BME280_CHIP_ID:
indio_dev->num_channels = 3;
data->chip_info = &bme280_chip_info;
data->oversampling_press = ilog2(16);
data->oversampling_humid = ilog2(16);
data->oversampling_temp = ilog2(2);
data->start_up_time = 2;
break;
default:
return -EINVAL;
}
/* Bring up regulators */
data->vddd = devm_regulator_get(dev, "vddd");
if (IS_ERR(data->vddd)) {
dev_err(dev, "failed to get VDDD regulator\n");
return PTR_ERR(data->vddd);
}
ret = regulator_enable(data->vddd);
if (ret) {
dev_err(dev, "failed to enable VDDD regulator\n");
return ret;
}
data->vdda = devm_regulator_get(dev, "vdda");
if (IS_ERR(data->vdda)) {
dev_err(dev, "failed to get VDDA regulator\n");
ret = PTR_ERR(data->vddd);
goto out_disable_vddd;
}
ret = regulator_enable(data->vdda);
if (ret) {
dev_err(dev, "failed to enable VDDA regulator\n");
goto out_disable_vddd;
}
/* Wait to make sure we started up properly */
mdelay(data->start_up_time);
/* Bring chip out of reset if there is an assigned GPIO line */
gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
/* Deassert the signal */
if (!IS_ERR(gpiod)) {
dev_info(dev, "release reset\n");
gpiod_set_value(gpiod, 0);
}
data->regmap = regmap;
ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
if (ret < 0)
goto out_disable_vdda;
if (chip_id != chip) {
dev_err(dev, "bad chip id: expected %x got %x\n",
chip, chip_id);
ret = -EINVAL;
goto out_disable_vdda;
}
ret = data->chip_info->chip_config(data);
if (ret < 0)
goto out_disable_vdda;
dev_set_drvdata(dev, indio_dev);
ret = iio_device_register(indio_dev);
if (ret)
goto out_disable_vdda;
return 0;
out_disable_vdda:
regulator_disable(data->vdda);
out_disable_vddd:
regulator_disable(data->vddd);
return ret;
}
int bmp280_common_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmp280_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
regulator_disable(data->vdda);
regulator_disable(data->vddd);
return 0;
}
|