summaryrefslogtreecommitdiff
path: root/drivers/i2c/busses/i2c-qup.c
blob: fbc04b60cfd1cf76e7f657b6989f859e38504cfb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
 * Copyright (c) 2014, Sony Mobile Communications AB.
 *
 */

#include <linux/acpi.h>
#include <linux/atomic.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>

/* QUP Registers */
#define QUP_CONFIG		0x000
#define QUP_STATE		0x004
#define QUP_IO_MODE		0x008
#define QUP_SW_RESET		0x00c
#define QUP_OPERATIONAL		0x018
#define QUP_ERROR_FLAGS		0x01c
#define QUP_ERROR_FLAGS_EN	0x020
#define QUP_OPERATIONAL_MASK	0x028
#define QUP_HW_VERSION		0x030
#define QUP_MX_OUTPUT_CNT	0x100
#define QUP_OUT_FIFO_BASE	0x110
#define QUP_MX_WRITE_CNT	0x150
#define QUP_MX_INPUT_CNT	0x200
#define QUP_MX_READ_CNT		0x208
#define QUP_IN_FIFO_BASE	0x218
#define QUP_I2C_CLK_CTL		0x400
#define QUP_I2C_STATUS		0x404
#define QUP_I2C_MASTER_GEN	0x408

/* QUP States and reset values */
#define QUP_RESET_STATE		0
#define QUP_RUN_STATE		1
#define QUP_PAUSE_STATE		3
#define QUP_STATE_MASK		3

#define QUP_STATE_VALID		BIT(2)
#define QUP_I2C_MAST_GEN	BIT(4)
#define QUP_I2C_FLUSH		BIT(6)

#define QUP_OPERATIONAL_RESET	0x000ff0
#define QUP_I2C_STATUS_RESET	0xfffffc

/* QUP OPERATIONAL FLAGS */
#define QUP_I2C_NACK_FLAG	BIT(3)
#define QUP_OUT_NOT_EMPTY	BIT(4)
#define QUP_IN_NOT_EMPTY	BIT(5)
#define QUP_OUT_FULL		BIT(6)
#define QUP_OUT_SVC_FLAG	BIT(8)
#define QUP_IN_SVC_FLAG		BIT(9)
#define QUP_MX_OUTPUT_DONE	BIT(10)
#define QUP_MX_INPUT_DONE	BIT(11)
#define OUT_BLOCK_WRITE_REQ	BIT(12)
#define IN_BLOCK_READ_REQ	BIT(13)

/* I2C mini core related values */
#define QUP_NO_INPUT		BIT(7)
#define QUP_CLOCK_AUTO_GATE	BIT(13)
#define I2C_MINI_CORE		(2 << 8)
#define I2C_N_VAL		15
#define I2C_N_VAL_V2		7

/* Most significant word offset in FIFO port */
#define QUP_MSW_SHIFT		(I2C_N_VAL + 1)

/* Packing/Unpacking words in FIFOs, and IO modes */
#define QUP_OUTPUT_BLK_MODE	(1 << 10)
#define QUP_OUTPUT_BAM_MODE	(3 << 10)
#define QUP_INPUT_BLK_MODE	(1 << 12)
#define QUP_INPUT_BAM_MODE	(3 << 12)
#define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
#define QUP_UNPACK_EN		BIT(14)
#define QUP_PACK_EN		BIT(15)

#define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
#define QUP_V2_TAGS_EN		1

#define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
#define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
#define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
#define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)

/* QUP tags */
#define QUP_TAG_START		(1 << 8)
#define QUP_TAG_DATA		(2 << 8)
#define QUP_TAG_STOP		(3 << 8)
#define QUP_TAG_REC		(4 << 8)
#define QUP_BAM_INPUT_EOT		0x93
#define QUP_BAM_FLUSH_STOP		0x96

/* QUP v2 tags */
#define QUP_TAG_V2_START               0x81
#define QUP_TAG_V2_DATAWR              0x82
#define QUP_TAG_V2_DATAWR_STOP         0x83
#define QUP_TAG_V2_DATARD              0x85
#define QUP_TAG_V2_DATARD_NACK         0x86
#define QUP_TAG_V2_DATARD_STOP         0x87

/* Status, Error flags */
#define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
#define I2C_STATUS_BUS_ACTIVE		BIT(8)
#define I2C_STATUS_ERROR_MASK		0x38000fc
#define QUP_STATUS_ERROR_FLAGS		0x7c

#define QUP_READ_LIMIT			256
#define SET_BIT				0x1
#define RESET_BIT			0x0
#define ONE_BYTE			0x1
#define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)

/* Maximum transfer length for single DMA descriptor */
#define MX_TX_RX_LEN			SZ_64K
#define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
/* Maximum transfer length for all DMA descriptors */
#define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
#define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)

/*
 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
 * the top of maximum transfer time calculated from i2c bus speed to compensate
 * the overheads.
 */
#define TOUT_MIN			2

/* Default values. Use these if FW query fails */
#define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
#define DEFAULT_SRC_CLK 20000000

/*
 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
 * data transfer
 */
#define QUP_MAX_TAGS_LEN		4
/* Max data length for each DATARD tags */
#define RECV_MAX_DATA_LEN		254
/* TAG length for DATA READ in RX FIFO  */
#define READ_RX_TAGS_LEN		2

static unsigned int scl_freq;
module_param_named(scl_freq, scl_freq, uint, 0444);
MODULE_PARM_DESC(scl_freq, "SCL frequency override");

/*
 * count: no of blocks
 * pos: current block number
 * tx_tag_len: tx tag length for current block
 * rx_tag_len: rx tag length for current block
 * data_len: remaining data length for current message
 * cur_blk_len: data length for current block
 * total_tx_len: total tx length including tag bytes for current QUP transfer
 * total_rx_len: total rx length including tag bytes for current QUP transfer
 * tx_fifo_data_pos: current byte number in TX FIFO word
 * tx_fifo_free: number of free bytes in current QUP block write.
 * rx_fifo_data_pos: current byte number in RX FIFO word
 * fifo_available: number of available bytes in RX FIFO for current
 *		   QUP block read
 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
 *		 to TX FIFO will be appended in this data and will be written to
 *		 TX FIFO when all the 4 bytes are available.
 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
 *		 contains the 4 bytes of RX data.
 * cur_data: pointer to tell cur data position for current message
 * cur_tx_tags: pointer to tell cur position in tags
 * tx_tags_sent: all tx tag bytes have been written in FIFO word
 * send_last_word: for tx FIFO, last word send is pending in current block
 * rx_bytes_read: if all the bytes have been read from rx FIFO.
 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
 * tags: contains tx tag bytes for current QUP transfer
 */
struct qup_i2c_block {
	int		count;
	int		pos;
	int		tx_tag_len;
	int		rx_tag_len;
	int		data_len;
	int		cur_blk_len;
	int		total_tx_len;
	int		total_rx_len;
	int		tx_fifo_data_pos;
	int		tx_fifo_free;
	int		rx_fifo_data_pos;
	int		fifo_available;
	u32		tx_fifo_data;
	u32		rx_fifo_data;
	u8		*cur_data;
	u8		*cur_tx_tags;
	bool		tx_tags_sent;
	bool		send_last_word;
	bool		rx_tags_fetched;
	bool		rx_bytes_read;
	bool		is_tx_blk_mode;
	bool		is_rx_blk_mode;
	u8		tags[6];
};

struct qup_i2c_tag {
	u8 *start;
	dma_addr_t addr;
};

struct qup_i2c_bam {
	struct	qup_i2c_tag tag;
	struct	dma_chan *dma;
	struct	scatterlist *sg;
	unsigned int sg_cnt;
};

struct qup_i2c_dev {
	struct device		*dev;
	void __iomem		*base;
	int			irq;
	struct clk		*clk;
	struct clk		*pclk;
	struct i2c_adapter	adap;

	int			clk_ctl;
	int			out_fifo_sz;
	int			in_fifo_sz;
	int			out_blk_sz;
	int			in_blk_sz;

	int			blk_xfer_limit;
	unsigned long		one_byte_t;
	unsigned long		xfer_timeout;
	struct qup_i2c_block	blk;

	struct i2c_msg		*msg;
	/* Current posion in user message buffer */
	int			pos;
	/* I2C protocol errors */
	u32			bus_err;
	/* QUP core errors */
	u32			qup_err;

	/* To check if this is the last msg */
	bool			is_last;
	bool			is_smbus_read;

	/* To configure when bus is in run state */
	u32			config_run;

	/* dma parameters */
	bool			is_dma;
	/* To check if the current transfer is using DMA */
	bool			use_dma;
	unsigned int		max_xfer_sg_len;
	unsigned int		tag_buf_pos;
	/* The threshold length above which block mode will be used */
	unsigned int		blk_mode_threshold;
	struct			dma_pool *dpool;
	struct			qup_i2c_tag start_tag;
	struct			qup_i2c_bam brx;
	struct			qup_i2c_bam btx;

	struct completion	xfer;
	/* function to write data in tx fifo */
	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
	/* function to read data from rx fifo */
	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
	/* function to write tags in tx fifo for i2c read transfer */
	void (*write_rx_tags)(struct qup_i2c_dev *qup);
};

static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
{
	struct qup_i2c_dev *qup = dev;
	struct qup_i2c_block *blk = &qup->blk;
	u32 bus_err;
	u32 qup_err;
	u32 opflags;

	bus_err = readl(qup->base + QUP_I2C_STATUS);
	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
	opflags = readl(qup->base + QUP_OPERATIONAL);

	if (!qup->msg) {
		/* Clear Error interrupt */
		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
		return IRQ_HANDLED;
	}

	bus_err &= I2C_STATUS_ERROR_MASK;
	qup_err &= QUP_STATUS_ERROR_FLAGS;

	/* Clear the error bits in QUP_ERROR_FLAGS */
	if (qup_err)
		writel(qup_err, qup->base + QUP_ERROR_FLAGS);

	/* Clear the error bits in QUP_I2C_STATUS */
	if (bus_err)
		writel(bus_err, qup->base + QUP_I2C_STATUS);

	/*
	 * Check for BAM mode and returns if already error has come for current
	 * transfer. In Error case, sometimes, QUP generates more than one
	 * interrupt.
	 */
	if (qup->use_dma && (qup->qup_err || qup->bus_err))
		return IRQ_HANDLED;

	/* Reset the QUP State in case of error */
	if (qup_err || bus_err) {
		/*
		 * Don’t reset the QUP state in case of BAM mode. The BAM
		 * flush operation needs to be scheduled in transfer function
		 * which will clear the remaining schedule descriptors in BAM
		 * HW FIFO and generates the BAM interrupt.
		 */
		if (!qup->use_dma)
			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
		goto done;
	}

	if (opflags & QUP_OUT_SVC_FLAG) {
		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);

		if (opflags & OUT_BLOCK_WRITE_REQ) {
			blk->tx_fifo_free += qup->out_blk_sz;
			if (qup->msg->flags & I2C_M_RD)
				qup->write_rx_tags(qup);
			else
				qup->write_tx_fifo(qup);
		}
	}

	if (opflags & QUP_IN_SVC_FLAG) {
		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);

		if (!blk->is_rx_blk_mode) {
			blk->fifo_available += qup->in_fifo_sz;
			qup->read_rx_fifo(qup);
		} else if (opflags & IN_BLOCK_READ_REQ) {
			blk->fifo_available += qup->in_blk_sz;
			qup->read_rx_fifo(qup);
		}
	}

	if (qup->msg->flags & I2C_M_RD) {
		if (!blk->rx_bytes_read)
			return IRQ_HANDLED;
	} else {
		/*
		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
		 * of interrupt for write message in FIFO mode is
		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
		 */
		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
			return IRQ_HANDLED;
	}

done:
	qup->qup_err = qup_err;
	qup->bus_err = bus_err;
	complete(&qup->xfer);
	return IRQ_HANDLED;
}

static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
				   u32 req_state, u32 req_mask)
{
	int retries = 1;
	u32 state;

	/*
	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
	 * cycles. So retry once after a 1uS delay.
	 */
	do {
		state = readl(qup->base + QUP_STATE);

		if (state & QUP_STATE_VALID &&
		    (state & req_mask) == req_state)
			return 0;

		udelay(1);
	} while (retries--);

	return -ETIMEDOUT;
}

static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
{
	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
}

static void qup_i2c_flush(struct qup_i2c_dev *qup)
{
	u32 val = readl(qup->base + QUP_STATE);

	val |= QUP_I2C_FLUSH;
	writel(val, qup->base + QUP_STATE);
}

static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
{
	return qup_i2c_poll_state_mask(qup, 0, 0);
}

static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
{
	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
}

static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
{
	if (qup_i2c_poll_state_valid(qup) != 0)
		return -EIO;

	writel(state, qup->base + QUP_STATE);

	if (qup_i2c_poll_state(qup, state) != 0)
		return -EIO;
	return 0;
}

/* Check if I2C bus returns to IDLE state */
static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
{
	unsigned long timeout;
	u32 status;
	int ret = 0;

	timeout = jiffies + len * 4;
	for (;;) {
		status = readl(qup->base + QUP_I2C_STATUS);
		if (!(status & I2C_STATUS_BUS_ACTIVE))
			break;

		if (time_after(jiffies, timeout))
			ret = -ETIMEDOUT;

		usleep_range(len, len * 2);
	}

	return ret;
}

static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;
	struct i2c_msg *msg = qup->msg;
	u32 addr = i2c_8bit_addr_from_msg(msg);
	u32 qup_tag;
	int idx;
	u32 val;

	if (qup->pos == 0) {
		val = QUP_TAG_START | addr;
		idx = 1;
		blk->tx_fifo_free--;
	} else {
		val = 0;
		idx = 0;
	}

	while (blk->tx_fifo_free && qup->pos < msg->len) {
		if (qup->pos == msg->len - 1)
			qup_tag = QUP_TAG_STOP;
		else
			qup_tag = QUP_TAG_DATA;

		if (idx & 1)
			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
		else
			val = qup_tag | msg->buf[qup->pos];

		/* Write out the pair and the last odd value */
		if (idx & 1 || qup->pos == msg->len - 1)
			writel(val, qup->base + QUP_OUT_FIFO_BASE);

		qup->pos++;
		idx++;
		blk->tx_fifo_free--;
	}
}

static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
				 struct i2c_msg *msg)
{
	qup->blk.pos = 0;
	qup->blk.data_len = msg->len;
	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
}

static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
{
	int data_len;

	if (qup->blk.data_len > qup->blk_xfer_limit)
		data_len = qup->blk_xfer_limit;
	else
		data_len = qup->blk.data_len;

	return data_len;
}

static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
{
	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
}

static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
			struct i2c_msg *msg)
{
	int len = 0;

	if (qup->is_smbus_read) {
		tags[len++] = QUP_TAG_V2_DATARD_STOP;
		tags[len++] = qup_i2c_get_data_len(qup);
	} else {
		tags[len++] = QUP_TAG_V2_START;
		tags[len++] = addr & 0xff;

		if (msg->flags & I2C_M_TEN)
			tags[len++] = addr >> 8;

		tags[len++] = QUP_TAG_V2_DATARD;
		/* Read 1 byte indicating the length of the SMBus message */
		tags[len++] = 1;
	}
	return len;
}

static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
			    struct i2c_msg *msg)
{
	u16 addr = i2c_8bit_addr_from_msg(msg);
	int len = 0;
	int data_len;

	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);

	/* Handle tags for SMBus block read */
	if (qup_i2c_check_msg_len(msg))
		return qup_i2c_set_tags_smb(addr, tags, qup, msg);

	if (qup->blk.pos == 0) {
		tags[len++] = QUP_TAG_V2_START;
		tags[len++] = addr & 0xff;

		if (msg->flags & I2C_M_TEN)
			tags[len++] = addr >> 8;
	}

	/* Send _STOP commands for the last block */
	if (last) {
		if (msg->flags & I2C_M_RD)
			tags[len++] = QUP_TAG_V2_DATARD_STOP;
		else
			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
	} else {
		if (msg->flags & I2C_M_RD)
			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
				      QUP_TAG_V2_DATARD_NACK :
				      QUP_TAG_V2_DATARD;
		else
			tags[len++] = QUP_TAG_V2_DATAWR;
	}

	data_len = qup_i2c_get_data_len(qup);

	/* 0 implies 256 bytes */
	if (data_len == QUP_READ_LIMIT)
		tags[len++] = 0;
	else
		tags[len++] = data_len;

	return len;
}


static void qup_i2c_bam_cb(void *data)
{
	struct qup_i2c_dev *qup = data;

	complete(&qup->xfer);
}

static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
			  unsigned int buflen, struct qup_i2c_dev *qup,
			  int dir)
{
	int ret;

	sg_set_buf(sg, buf, buflen);
	ret = dma_map_sg(qup->dev, sg, 1, dir);
	if (!ret)
		return -EINVAL;

	return 0;
}

static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
{
	if (qup->btx.dma)
		dma_release_channel(qup->btx.dma);
	if (qup->brx.dma)
		dma_release_channel(qup->brx.dma);
	qup->btx.dma = NULL;
	qup->brx.dma = NULL;
}

static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
{
	int err;

	if (!qup->btx.dma) {
		qup->btx.dma = dma_request_chan(qup->dev, "tx");
		if (IS_ERR(qup->btx.dma)) {
			err = PTR_ERR(qup->btx.dma);
			qup->btx.dma = NULL;
			dev_err(qup->dev, "\n tx channel not available");
			return err;
		}
	}

	if (!qup->brx.dma) {
		qup->brx.dma = dma_request_chan(qup->dev, "rx");
		if (IS_ERR(qup->brx.dma)) {
			dev_err(qup->dev, "\n rx channel not available");
			err = PTR_ERR(qup->brx.dma);
			qup->brx.dma = NULL;
			qup_i2c_rel_dma(qup);
			return err;
		}
	}
	return 0;
}

static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
{
	int ret = 0, limit = QUP_READ_LIMIT;
	u32 len = 0, blocks, rem;
	u32 i = 0, tlen, tx_len = 0;
	u8 *tags;

	qup->blk_xfer_limit = QUP_READ_LIMIT;
	qup_i2c_set_blk_data(qup, msg);

	blocks = qup->blk.count;
	rem = msg->len - (blocks - 1) * limit;

	if (msg->flags & I2C_M_RD) {
		while (qup->blk.pos < blocks) {
			tlen = (i == (blocks - 1)) ? rem : limit;
			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
			len += qup_i2c_set_tags(tags, qup, msg);
			qup->blk.data_len -= tlen;

			/* scratch buf to read the start and len tags */
			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
					     &qup->brx.tag.start[0],
					     2, qup, DMA_FROM_DEVICE);

			if (ret)
				return ret;

			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
					     &msg->buf[limit * i],
					     tlen, qup,
					     DMA_FROM_DEVICE);
			if (ret)
				return ret;

			i++;
			qup->blk.pos = i;
		}
		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
				     &qup->start_tag.start[qup->tag_buf_pos],
				     len, qup, DMA_TO_DEVICE);
		if (ret)
			return ret;

		qup->tag_buf_pos += len;
	} else {
		while (qup->blk.pos < blocks) {
			tlen = (i == (blocks - 1)) ? rem : limit;
			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
			len = qup_i2c_set_tags(tags, qup, msg);
			qup->blk.data_len -= tlen;

			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
					     tags, len,
					     qup, DMA_TO_DEVICE);
			if (ret)
				return ret;

			tx_len += len;
			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
					     &msg->buf[limit * i],
					     tlen, qup, DMA_TO_DEVICE);
			if (ret)
				return ret;
			i++;
			qup->blk.pos = i;
		}

		qup->tag_buf_pos += tx_len;
	}

	return 0;
}

static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
{
	struct dma_async_tx_descriptor *txd, *rxd = NULL;
	int ret = 0;
	dma_cookie_t cookie_rx, cookie_tx;
	u32 len = 0;
	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;

	/* schedule the EOT and FLUSH I2C tags */
	len = 1;
	if (rx_cnt) {
		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
		len++;

		/* scratch buf to read the BAM EOT FLUSH tags */
		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
				     &qup->brx.tag.start[0],
				     1, qup, DMA_FROM_DEVICE);
		if (ret)
			return ret;
	}

	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
			     len, qup, DMA_TO_DEVICE);
	if (ret)
		return ret;

	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
				      DMA_MEM_TO_DEV,
				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
	if (!txd) {
		dev_err(qup->dev, "failed to get tx desc\n");
		ret = -EINVAL;
		goto desc_err;
	}

	if (!rx_cnt) {
		txd->callback = qup_i2c_bam_cb;
		txd->callback_param = qup;
	}

	cookie_tx = dmaengine_submit(txd);
	if (dma_submit_error(cookie_tx)) {
		ret = -EINVAL;
		goto desc_err;
	}

	dma_async_issue_pending(qup->btx.dma);

	if (rx_cnt) {
		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
					      rx_cnt, DMA_DEV_TO_MEM,
					      DMA_PREP_INTERRUPT);
		if (!rxd) {
			dev_err(qup->dev, "failed to get rx desc\n");
			ret = -EINVAL;

			/* abort TX descriptors */
			dmaengine_terminate_all(qup->btx.dma);
			goto desc_err;
		}

		rxd->callback = qup_i2c_bam_cb;
		rxd->callback_param = qup;
		cookie_rx = dmaengine_submit(rxd);
		if (dma_submit_error(cookie_rx)) {
			ret = -EINVAL;
			goto desc_err;
		}

		dma_async_issue_pending(qup->brx.dma);
	}

	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
		dev_err(qup->dev, "normal trans timed out\n");
		ret = -ETIMEDOUT;
	}

	if (ret || qup->bus_err || qup->qup_err) {
		reinit_completion(&qup->xfer);

		if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
			dev_err(qup->dev, "change to run state timed out");
			goto desc_err;
		}

		qup_i2c_flush(qup);

		/* wait for remaining interrupts to occur */
		if (!wait_for_completion_timeout(&qup->xfer, HZ))
			dev_err(qup->dev, "flush timed out\n");

		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
	}

desc_err:
	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);

	if (rx_cnt)
		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
			     DMA_FROM_DEVICE);

	return ret;
}

static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
{
	qup->btx.sg_cnt = 0;
	qup->brx.sg_cnt = 0;
	qup->tag_buf_pos = 0;
}

static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
			    int num)
{
	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
	int ret = 0;
	int idx = 0;

	enable_irq(qup->irq);
	ret = qup_i2c_req_dma(qup);

	if (ret)
		goto out;

	writel(0, qup->base + QUP_MX_INPUT_CNT);
	writel(0, qup->base + QUP_MX_OUTPUT_CNT);

	/* set BAM mode */
	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);

	/* mask fifo irqs */
	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);

	/* set RUN STATE */
	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
	if (ret)
		goto out;

	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
	qup_i2c_bam_clear_tag_buffers(qup);

	for (idx = 0; idx < num; idx++) {
		qup->msg = msg + idx;
		qup->is_last = idx == (num - 1);

		ret = qup_i2c_bam_make_desc(qup, qup->msg);
		if (ret)
			break;

		/*
		 * Make DMA descriptor and schedule the BAM transfer if its
		 * already crossed the maximum length. Since the memory for all
		 * tags buffers have been taken for 2 maximum possible
		 * transfers length so it will never cross the buffer actual
		 * length.
		 */
		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
		    qup->is_last) {
			ret = qup_i2c_bam_schedule_desc(qup);
			if (ret)
				break;

			qup_i2c_bam_clear_tag_buffers(qup);
		}
	}

out:
	disable_irq(qup->irq);

	qup->msg = NULL;
	return ret;
}

static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
				     struct i2c_msg *msg)
{
	unsigned long left;
	int ret = 0;

	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
	if (!left) {
		writel(1, qup->base + QUP_SW_RESET);
		ret = -ETIMEDOUT;
	}

	if (qup->bus_err || qup->qup_err)
		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;

	return ret;
}

static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;
	struct i2c_msg *msg = qup->msg;
	u32 val = 0;
	int idx = 0;

	while (blk->fifo_available && qup->pos < msg->len) {
		if ((idx & 1) == 0) {
			/* Reading 2 words at time */
			val = readl(qup->base + QUP_IN_FIFO_BASE);
			msg->buf[qup->pos++] = val & 0xFF;
		} else {
			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
		}
		idx++;
		blk->fifo_available--;
	}

	if (qup->pos == msg->len)
		blk->rx_bytes_read = true;
}

static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
{
	struct i2c_msg *msg = qup->msg;
	u32 addr, len, val;

	addr = i2c_8bit_addr_from_msg(msg);

	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;

	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
	writel(val, qup->base + QUP_OUT_FIFO_BASE);
}

static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;
	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
	u32 io_mode = QUP_REPACK_EN;

	blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
	blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;

	if (blk->is_tx_blk_mode) {
		io_mode |= QUP_OUTPUT_BLK_MODE;
		writel(0, qup->base + QUP_MX_WRITE_CNT);
		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
	} else {
		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
	}

	if (blk->total_rx_len) {
		if (blk->is_rx_blk_mode) {
			io_mode |= QUP_INPUT_BLK_MODE;
			writel(0, qup->base + QUP_MX_READ_CNT);
			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
		} else {
			writel(0, qup->base + QUP_MX_INPUT_CNT);
			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
		}
	} else {
		qup_config |= QUP_NO_INPUT;
	}

	writel(qup_config, qup->base + QUP_CONFIG);
	writel(io_mode, qup->base + QUP_IO_MODE);
}

static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
{
	blk->tx_fifo_free = 0;
	blk->fifo_available = 0;
	blk->rx_bytes_read = false;
}

static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
{
	struct qup_i2c_block *blk = &qup->blk;
	int ret;

	qup_i2c_clear_blk_v1(blk);
	qup_i2c_conf_v1(qup);
	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
	if (ret)
		return ret;

	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);

	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
	if (ret)
		return ret;

	reinit_completion(&qup->xfer);
	enable_irq(qup->irq);
	if (!blk->is_tx_blk_mode) {
		blk->tx_fifo_free = qup->out_fifo_sz;

		if (is_rx)
			qup_i2c_write_rx_tags_v1(qup);
		else
			qup_i2c_write_tx_fifo_v1(qup);
	}

	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
	if (ret)
		goto err;

	ret = qup_i2c_wait_for_complete(qup, qup->msg);
	if (ret)
		goto err;

	ret = qup_i2c_bus_active(qup, ONE_BYTE);

err:
	disable_irq(qup->irq);
	return ret;
}

static int qup_i2c_write_one(struct qup_i2c_dev *qup)
{
	struct i2c_msg *msg = qup->msg;
	struct qup_i2c_block *blk = &qup->blk;

	qup->pos = 0;
	blk->total_tx_len = msg->len + 1;
	blk->total_rx_len = 0;

	return qup_i2c_conf_xfer_v1(qup, false);
}

static int qup_i2c_read_one(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;

	qup->pos = 0;
	blk->total_tx_len = 2;
	blk->total_rx_len = qup->msg->len;

	return qup_i2c_conf_xfer_v1(qup, true);
}

static int qup_i2c_xfer(struct i2c_adapter *adap,
			struct i2c_msg msgs[],
			int num)
{
	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
	int ret, idx;

	ret = pm_runtime_get_sync(qup->dev);
	if (ret < 0)
		goto out;

	qup->bus_err = 0;
	qup->qup_err = 0;

	writel(1, qup->base + QUP_SW_RESET);
	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
	if (ret)
		goto out;

	/* Configure QUP as I2C mini core */
	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);

	for (idx = 0; idx < num; idx++) {
		if (qup_i2c_poll_state_i2c_master(qup)) {
			ret = -EIO;
			goto out;
		}

		if (qup_i2c_check_msg_len(&msgs[idx])) {
			ret = -EINVAL;
			goto out;
		}

		qup->msg = &msgs[idx];
		if (msgs[idx].flags & I2C_M_RD)
			ret = qup_i2c_read_one(qup);
		else
			ret = qup_i2c_write_one(qup);

		if (ret)
			break;

		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
		if (ret)
			break;
	}

	if (ret == 0)
		ret = num;
out:

	pm_runtime_mark_last_busy(qup->dev);
	pm_runtime_put_autosuspend(qup->dev);

	return ret;
}

/*
 * Configure registers related with reconfiguration during run and call it
 * before each i2c sub transfer.
 */
static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;
	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;

	if (blk->is_tx_blk_mode)
		writel(qup->config_run | blk->total_tx_len,
		       qup->base + QUP_MX_OUTPUT_CNT);
	else
		writel(qup->config_run | blk->total_tx_len,
		       qup->base + QUP_MX_WRITE_CNT);

	if (blk->total_rx_len) {
		if (blk->is_rx_blk_mode)
			writel(qup->config_run | blk->total_rx_len,
			       qup->base + QUP_MX_INPUT_CNT);
		else
			writel(qup->config_run | blk->total_rx_len,
			       qup->base + QUP_MX_READ_CNT);
	} else {
		qup_config |= QUP_NO_INPUT;
	}

	writel(qup_config, qup->base + QUP_CONFIG);
}

/*
 * Configure registers related with transfer mode (FIFO/Block)
 * before starting of i2c transfer. It will be called only once in
 * QUP RESET state.
 */
static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;
	u32 io_mode = QUP_REPACK_EN;

	if (blk->is_tx_blk_mode) {
		io_mode |= QUP_OUTPUT_BLK_MODE;
		writel(0, qup->base + QUP_MX_WRITE_CNT);
	} else {
		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
	}

	if (blk->is_rx_blk_mode) {
		io_mode |= QUP_INPUT_BLK_MODE;
		writel(0, qup->base + QUP_MX_READ_CNT);
	} else {
		writel(0, qup->base + QUP_MX_INPUT_CNT);
	}

	writel(io_mode, qup->base + QUP_IO_MODE);
}

/* Clear required variables before starting of any QUP v2 sub transfer. */
static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
{
	blk->send_last_word = false;
	blk->tx_tags_sent = false;
	blk->tx_fifo_data = 0;
	blk->tx_fifo_data_pos = 0;
	blk->tx_fifo_free = 0;

	blk->rx_tags_fetched = false;
	blk->rx_bytes_read = false;
	blk->rx_fifo_data = 0;
	blk->rx_fifo_data_pos = 0;
	blk->fifo_available = 0;
}

/* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;
	int j;

	for (j = blk->rx_fifo_data_pos;
	     blk->cur_blk_len && blk->fifo_available;
	     blk->cur_blk_len--, blk->fifo_available--) {
		if (j == 0)
			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);

		*(blk->cur_data++) = blk->rx_fifo_data;
		blk->rx_fifo_data >>= 8;

		if (j == 3)
			j = 0;
		else
			j++;
	}

	blk->rx_fifo_data_pos = j;
}

/* Receive tags for read message in QUP v2 i2c transfer. */
static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;

	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
	blk->rx_fifo_data_pos = blk->rx_tag_len;
	blk->fifo_available -= blk->rx_tag_len;
}

/*
 * Read the data and tags from RX FIFO. Since in read case, the tags will be
 * preceded by received data bytes so
 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
 *    all tag bytes and discard that.
 * 2. Read the data from RX FIFO. When all the data bytes have been read then
 *    set rx_bytes_read to true.
 */
static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;

	if (!blk->rx_tags_fetched) {
		qup_i2c_recv_tags(qup);
		blk->rx_tags_fetched = true;
	}

	qup_i2c_recv_data(qup);
	if (!blk->cur_blk_len)
		blk->rx_bytes_read = true;
}

/*
 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
 */
static void
qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
{
	struct qup_i2c_block *blk = &qup->blk;
	unsigned int j;

	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
	     (*len)--, blk->tx_fifo_free--) {
		blk->tx_fifo_data |= *(*data)++ << (j * 8);
		if (j == 3) {
			writel(blk->tx_fifo_data,
			       qup->base + QUP_OUT_FIFO_BASE);
			blk->tx_fifo_data = 0x0;
			j = 0;
		} else {
			j++;
		}
	}

	blk->tx_fifo_data_pos = j;
}

/* Transfer tags for read message in QUP v2 i2c transfer. */
static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;

	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
	if (blk->tx_fifo_data_pos)
		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
}

/*
 * Write the data and tags in TX FIFO. Since in write case, both tags and data
 * need to be written and QUP write tags can have maximum 256 data length, so
 *
 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
 *    tags to TX FIFO and set tx_tags_sent to true.
 * 2. Check if send_last_word is true. It will be set when last few data bytes
 *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
 *    space. All this data bytes are available in tx_fifo_data so write this
 *    in FIFO.
 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
 *    then more data is pending otherwise following 3 cases can be possible
 *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
 *       have been written in TX FIFO so nothing else is required.
 *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
 *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
 *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
 *       will be always greater than or equal to 4 bytes.
 *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
 *       bytes) are copied to tx_fifo_data but couldn't be sent because of
 *       FIFO full so make send_last_word true.
 */
static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
{
	struct qup_i2c_block *blk = &qup->blk;

	if (!blk->tx_tags_sent) {
		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
				       &blk->tx_tag_len);
		blk->tx_tags_sent = true;
	}

	if (blk->send_last_word)
		goto send_last_word;

	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
	if (!blk->cur_blk_len) {
		if (!blk->tx_fifo_data_pos)
			return;

		if (blk->tx_fifo_free)
			goto send_last_word;

		blk->send_last_word = true;
	}

	return;

send_last_word:
	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
}

/*
 * Main transfer function which read or write i2c data.
 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
 * transfers can be scheduled.
 */
static int
qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
		     bool change_pause_state)
{
	struct qup_i2c_block *blk = &qup->blk;
	struct i2c_msg *msg = qup->msg;
	int ret;

	/*
	 * Check if its SMBus Block read for which the top level read will be
	 * done into 2 QUP reads. One with message length 1 while other one is
	 * with actual length.
	 */
	if (qup_i2c_check_msg_len(msg)) {
		if (qup->is_smbus_read) {
			/*
			 * If the message length is already read in
			 * the first byte of the buffer, account for
			 * that by setting the offset
			 */
			blk->cur_data += 1;
			is_first = false;
		} else {
			change_pause_state = false;
		}
	}

	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;

	qup_i2c_clear_blk_v2(blk);
	qup_i2c_conf_count_v2(qup);

	/* If it is first sub transfer, then configure i2c bus clocks */
	if (is_first) {
		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
		if (ret)
			return ret;

		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);

		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
		if (ret)
			return ret;
	}

	reinit_completion(&qup->xfer);
	enable_irq(qup->irq);
	/*
	 * In FIFO mode, tx FIFO can be written directly while in block mode the
	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
	 */
	if (!blk->is_tx_blk_mode) {
		blk->tx_fifo_free = qup->out_fifo_sz;

		if (is_rx)
			qup_i2c_write_rx_tags_v2(qup);
		else
			qup_i2c_write_tx_fifo_v2(qup);
	}

	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
	if (ret)
		goto err;

	ret = qup_i2c_wait_for_complete(qup, msg);
	if (ret)
		goto err;

	/* Move to pause state for all the transfers, except last one */
	if (change_pause_state) {
		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
		if (ret)
			goto err;
	}

err:
	disable_irq(qup->irq);
	return ret;
}

/*
 * Transfer one read/write message in i2c transfer. It splits the message into
 * multiple of blk_xfer_limit data length blocks and schedule each
 * QUP block individually.
 */
static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
{
	int ret = 0;
	unsigned int data_len, i;
	struct i2c_msg *msg = qup->msg;
	struct qup_i2c_block *blk = &qup->blk;
	u8 *msg_buf = msg->buf;

	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
	qup_i2c_set_blk_data(qup, msg);

	for (i = 0; i < blk->count; i++) {
		data_len =  qup_i2c_get_data_len(qup);
		blk->pos = i;
		blk->cur_tx_tags = blk->tags;
		blk->cur_blk_len = data_len;
		blk->tx_tag_len =
			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);

		blk->cur_data = msg_buf;

		if (is_rx) {
			blk->total_tx_len = blk->tx_tag_len;
			blk->rx_tag_len = 2;
			blk->total_rx_len = blk->rx_tag_len + data_len;
		} else {
			blk->total_tx_len = blk->tx_tag_len + data_len;
			blk->total_rx_len = 0;
		}

		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
					   !qup->is_last || i < blk->count - 1);
		if (ret)
			return ret;

		/* Handle SMBus block read length */
		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
		    !qup->is_smbus_read) {
			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
				return -EPROTO;

			msg->len = msg->buf[0];
			qup->is_smbus_read = true;
			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
			qup->is_smbus_read = false;
			if (ret)
				return ret;

			msg->len += 1;
		}

		msg_buf += data_len;
		blk->data_len -= qup->blk_xfer_limit;
	}

	return ret;
}

/*
 * QUP v2 supports 3 modes
 * Programmed IO using FIFO mode : Less than FIFO size
 * Programmed IO using Block mode : Greater than FIFO size
 * DMA using BAM : Appropriate for any transaction size but the address should
 *		   be DMA applicable
 *
 * This function determines the mode which will be used for this transfer. An
 * i2c transfer contains multiple message. Following are the rules to determine
 * the mode used.
 * 1. Determine complete length, maximum tx and rx length for complete transfer.
 * 2. If complete transfer length is greater than fifo size then use the DMA
 *    mode.
 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
 *    for maximum tx and rx length to determine mode.
 */
static int
qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
			  struct i2c_msg msgs[], int num)
{
	int idx;
	bool no_dma = false;
	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;

	/* All i2c_msgs should be transferred using either dma or cpu */
	for (idx = 0; idx < num; idx++) {
		if (msgs[idx].flags & I2C_M_RD)
			max_rx_len = max_t(unsigned int, max_rx_len,
					   msgs[idx].len);
		else
			max_tx_len = max_t(unsigned int, max_tx_len,
					   msgs[idx].len);

		if (is_vmalloc_addr(msgs[idx].buf))
			no_dma = true;

		total_len += msgs[idx].len;
	}

	if (!no_dma && qup->is_dma &&
	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
		qup->use_dma = true;
	} else {
		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
			QUP_MAX_TAGS_LEN;
		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
			READ_RX_TAGS_LEN;
	}

	return 0;
}

static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
			   struct i2c_msg msgs[],
			   int num)
{
	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
	int ret, idx = 0;

	qup->bus_err = 0;
	qup->qup_err = 0;

	ret = pm_runtime_get_sync(qup->dev);
	if (ret < 0)
		goto out;

	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
	if (ret)
		goto out;

	writel(1, qup->base + QUP_SW_RESET);
	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
	if (ret)
		goto out;

	/* Configure QUP as I2C mini core */
	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);

	if (qup_i2c_poll_state_i2c_master(qup)) {
		ret = -EIO;
		goto out;
	}

	if (qup->use_dma) {
		reinit_completion(&qup->xfer);
		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
		qup->use_dma = false;
	} else {
		qup_i2c_conf_mode_v2(qup);

		for (idx = 0; idx < num; idx++) {
			qup->msg = &msgs[idx];
			qup->is_last = idx == (num - 1);

			ret = qup_i2c_xfer_v2_msg(qup, idx,
					!!(msgs[idx].flags & I2C_M_RD));
			if (ret)
				break;
		}
		qup->msg = NULL;
	}

	if (!ret)
		ret = qup_i2c_bus_active(qup, ONE_BYTE);

	if (!ret)
		qup_i2c_change_state(qup, QUP_RESET_STATE);

	if (ret == 0)
		ret = num;
out:
	pm_runtime_mark_last_busy(qup->dev);
	pm_runtime_put_autosuspend(qup->dev);

	return ret;
}

static u32 qup_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}

static const struct i2c_algorithm qup_i2c_algo = {
	.master_xfer	= qup_i2c_xfer,
	.functionality	= qup_i2c_func,
};

static const struct i2c_algorithm qup_i2c_algo_v2 = {
	.master_xfer	= qup_i2c_xfer_v2,
	.functionality	= qup_i2c_func,
};

/*
 * The QUP block will issue a NACK and STOP on the bus when reaching
 * the end of the read, the length of the read is specified as one byte
 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
 */
static const struct i2c_adapter_quirks qup_i2c_quirks = {
	.flags = I2C_AQ_NO_ZERO_LEN,
	.max_read_len = QUP_READ_LIMIT,
};

static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
	.flags = I2C_AQ_NO_ZERO_LEN,
};

static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
{
	clk_prepare_enable(qup->clk);
	clk_prepare_enable(qup->pclk);
}

static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
{
	u32 config;

	qup_i2c_change_state(qup, QUP_RESET_STATE);
	clk_disable_unprepare(qup->clk);
	config = readl(qup->base + QUP_CONFIG);
	config |= QUP_CLOCK_AUTO_GATE;
	writel(config, qup->base + QUP_CONFIG);
	clk_disable_unprepare(qup->pclk);
}

static const struct acpi_device_id qup_i2c_acpi_match[] = {
	{ "QCOM8010"},
	{ },
};
MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);

static int qup_i2c_probe(struct platform_device *pdev)
{
	static const int blk_sizes[] = {4, 16, 32};
	struct qup_i2c_dev *qup;
	unsigned long one_bit_t;
	u32 io_mode, hw_ver, size;
	int ret, fs_div, hs_div;
	u32 src_clk_freq = DEFAULT_SRC_CLK;
	u32 clk_freq = DEFAULT_CLK_FREQ;
	int blocks;
	bool is_qup_v1;

	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
	if (!qup)
		return -ENOMEM;

	qup->dev = &pdev->dev;
	init_completion(&qup->xfer);
	platform_set_drvdata(pdev, qup);

	if (scl_freq) {
		dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
		clk_freq = scl_freq;
	} else {
		ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
		if (ret) {
			dev_notice(qup->dev, "using default clock-frequency %d",
				DEFAULT_CLK_FREQ);
		}
	}

	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
		qup->adap.algo = &qup_i2c_algo;
		qup->adap.quirks = &qup_i2c_quirks;
		is_qup_v1 = true;
	} else {
		qup->adap.algo = &qup_i2c_algo_v2;
		qup->adap.quirks = &qup_i2c_quirks_v2;
		is_qup_v1 = false;
		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
			goto nodma;
		else
			ret = qup_i2c_req_dma(qup);

		if (ret == -EPROBE_DEFER)
			goto fail_dma;
		else if (ret != 0)
			goto nodma;

		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
		blocks = (MX_DMA_BLOCKS << 1) + 1;
		qup->btx.sg = devm_kcalloc(&pdev->dev,
					   blocks, sizeof(*qup->btx.sg),
					   GFP_KERNEL);
		if (!qup->btx.sg) {
			ret = -ENOMEM;
			goto fail_dma;
		}
		sg_init_table(qup->btx.sg, blocks);

		qup->brx.sg = devm_kcalloc(&pdev->dev,
					   blocks, sizeof(*qup->brx.sg),
					   GFP_KERNEL);
		if (!qup->brx.sg) {
			ret = -ENOMEM;
			goto fail_dma;
		}
		sg_init_table(qup->brx.sg, blocks);

		/* 2 tag bytes for each block + 5 for start, stop tags */
		size = blocks * 2 + 5;

		qup->start_tag.start = devm_kzalloc(&pdev->dev,
						    size, GFP_KERNEL);
		if (!qup->start_tag.start) {
			ret = -ENOMEM;
			goto fail_dma;
		}

		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
		if (!qup->brx.tag.start) {
			ret = -ENOMEM;
			goto fail_dma;
		}

		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
		if (!qup->btx.tag.start) {
			ret = -ENOMEM;
			goto fail_dma;
		}
		qup->is_dma = true;
	}

nodma:
	/* We support frequencies up to FAST Mode Plus (1MHz) */
	if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
		dev_err(qup->dev, "clock frequency not supported %d\n",
			clk_freq);
		return -EINVAL;
	}

	qup->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(qup->base))
		return PTR_ERR(qup->base);

	qup->irq = platform_get_irq(pdev, 0);
	if (qup->irq < 0)
		return qup->irq;

	if (has_acpi_companion(qup->dev)) {
		ret = device_property_read_u32(qup->dev,
				"src-clock-hz", &src_clk_freq);
		if (ret) {
			dev_notice(qup->dev, "using default src-clock-hz %d",
				DEFAULT_SRC_CLK);
		}
		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
	} else {
		qup->clk = devm_clk_get(qup->dev, "core");
		if (IS_ERR(qup->clk)) {
			dev_err(qup->dev, "Could not get core clock\n");
			return PTR_ERR(qup->clk);
		}

		qup->pclk = devm_clk_get(qup->dev, "iface");
		if (IS_ERR(qup->pclk)) {
			dev_err(qup->dev, "Could not get iface clock\n");
			return PTR_ERR(qup->pclk);
		}
		qup_i2c_enable_clocks(qup);
		src_clk_freq = clk_get_rate(qup->clk);
	}

	/*
	 * Bootloaders might leave a pending interrupt on certain QUP's,
	 * so we reset the core before registering for interrupts.
	 */
	writel(1, qup->base + QUP_SW_RESET);
	ret = qup_i2c_poll_state_valid(qup);
	if (ret)
		goto fail;

	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
			       IRQF_TRIGGER_HIGH, "i2c_qup", qup);
	if (ret) {
		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
		goto fail;
	}
	disable_irq(qup->irq);

	hw_ver = readl(qup->base + QUP_HW_VERSION);
	dev_dbg(qup->dev, "Revision %x\n", hw_ver);

	io_mode = readl(qup->base + QUP_IO_MODE);

	/*
	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
	 * associated with each byte written/received
	 */
	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
	if (size >= ARRAY_SIZE(blk_sizes)) {
		ret = -EIO;
		goto fail;
	}
	qup->out_blk_sz = blk_sizes[size];

	size = QUP_INPUT_BLOCK_SIZE(io_mode);
	if (size >= ARRAY_SIZE(blk_sizes)) {
		ret = -EIO;
		goto fail;
	}
	qup->in_blk_sz = blk_sizes[size];

	if (is_qup_v1) {
		/*
		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
		 * single transfer but the block size is in bytes so divide the
		 * in_blk_sz and out_blk_sz by 2
		 */
		qup->in_blk_sz /= 2;
		qup->out_blk_sz /= 2;
		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
	} else {
		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
	}

	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);

	size = QUP_INPUT_FIFO_SIZE(io_mode);
	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);

	hs_div = 3;
	if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
	} else {
		/* 33%/66% duty cycle */
		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
	}

	/*
	 * Time it takes for a byte to be clocked out on the bus.
	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
	 */
	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
	qup->one_byte_t = one_bit_t * 9;
	qup->xfer_timeout = TOUT_MIN * HZ +
		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);

	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
		qup->in_blk_sz, qup->in_fifo_sz,
		qup->out_blk_sz, qup->out_fifo_sz);

	i2c_set_adapdata(&qup->adap, qup);
	qup->adap.dev.parent = qup->dev;
	qup->adap.dev.of_node = pdev->dev.of_node;
	qup->is_last = true;

	strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));

	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
	pm_runtime_use_autosuspend(qup->dev);
	pm_runtime_set_active(qup->dev);
	pm_runtime_enable(qup->dev);

	ret = i2c_add_adapter(&qup->adap);
	if (ret)
		goto fail_runtime;

	return 0;

fail_runtime:
	pm_runtime_disable(qup->dev);
	pm_runtime_set_suspended(qup->dev);
fail:
	qup_i2c_disable_clocks(qup);
fail_dma:
	if (qup->btx.dma)
		dma_release_channel(qup->btx.dma);
	if (qup->brx.dma)
		dma_release_channel(qup->brx.dma);
	return ret;
}

static int qup_i2c_remove(struct platform_device *pdev)
{
	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);

	if (qup->is_dma) {
		dma_release_channel(qup->btx.dma);
		dma_release_channel(qup->brx.dma);
	}

	disable_irq(qup->irq);
	qup_i2c_disable_clocks(qup);
	i2c_del_adapter(&qup->adap);
	pm_runtime_disable(qup->dev);
	pm_runtime_set_suspended(qup->dev);
	return 0;
}

#ifdef CONFIG_PM
static int qup_i2c_pm_suspend_runtime(struct device *device)
{
	struct qup_i2c_dev *qup = dev_get_drvdata(device);

	dev_dbg(device, "pm_runtime: suspending...\n");
	qup_i2c_disable_clocks(qup);
	return 0;
}

static int qup_i2c_pm_resume_runtime(struct device *device)
{
	struct qup_i2c_dev *qup = dev_get_drvdata(device);

	dev_dbg(device, "pm_runtime: resuming...\n");
	qup_i2c_enable_clocks(qup);
	return 0;
}
#endif

#ifdef CONFIG_PM_SLEEP
static int qup_i2c_suspend(struct device *device)
{
	if (!pm_runtime_suspended(device))
		return qup_i2c_pm_suspend_runtime(device);
	return 0;
}

static int qup_i2c_resume(struct device *device)
{
	qup_i2c_pm_resume_runtime(device);
	pm_runtime_mark_last_busy(device);
	pm_request_autosuspend(device);
	return 0;
}
#endif

static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(
		qup_i2c_suspend,
		qup_i2c_resume)
	SET_RUNTIME_PM_OPS(
		qup_i2c_pm_suspend_runtime,
		qup_i2c_pm_resume_runtime,
		NULL)
};

static const struct of_device_id qup_i2c_dt_match[] = {
	{ .compatible = "qcom,i2c-qup-v1.1.1" },
	{ .compatible = "qcom,i2c-qup-v2.1.1" },
	{ .compatible = "qcom,i2c-qup-v2.2.1" },
	{}
};
MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);

static struct platform_driver qup_i2c_driver = {
	.probe  = qup_i2c_probe,
	.remove = qup_i2c_remove,
	.driver = {
		.name = "i2c_qup",
		.pm = &qup_i2c_qup_pm_ops,
		.of_match_table = qup_i2c_dt_match,
		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
	},
};

module_platform_driver(qup_i2c_driver);

MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:i2c_qup");