1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc.h"
#include <drm/drm_managed.h>
#include <generated/xe_wa_oob.h>
#include "abi/guc_actions_abi.h"
#include "abi/guc_errors_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_gtt_defs.h"
#include "regs/xe_guc_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_gt_sriov_vf.h"
#include "xe_gt_throttle.h"
#include "xe_guc_ads.h"
#include "xe_guc_ct.h"
#include "xe_guc_db_mgr.h"
#include "xe_guc_hwconfig.h"
#include "xe_guc_log.h"
#include "xe_guc_pc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
#include "xe_platform_types.h"
#include "xe_sriov.h"
#include "xe_uc.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"
#include "xe_wopcm.h"
static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
struct xe_bo *bo)
{
struct xe_device *xe = guc_to_xe(guc);
u32 addr = xe_bo_ggtt_addr(bo);
/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
xe_assert(xe, addr < GUC_GGTT_TOP);
xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
return addr;
}
static u32 guc_ctl_debug_flags(struct xe_guc *guc)
{
u32 level = xe_guc_log_get_level(&guc->log);
u32 flags = 0;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct xe_guc *guc)
{
u32 flags = 0;
if (!guc_to_xe(guc)->info.skip_guc_pc)
flags |= GUC_CTL_ENABLE_SLPC;
return flags;
}
static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
{
u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
u32 flags;
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
#define LOG_UNIT SZ_1M
#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
#else
#define LOG_UNIT SZ_4K
#define LOG_FLAG 0
#endif
#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
#define CAPTURE_UNIT SZ_1M
#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
#else
#define CAPTURE_UNIT SZ_4K
#define CAPTURE_FLAG 0
#endif
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
CAPTURE_FLAG |
LOG_FLAG |
((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
GUC_LOG_CAPTURE_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
#undef LOG_UNIT
#undef LOG_FLAG
#undef CAPTURE_UNIT
#undef CAPTURE_FLAG
return flags;
}
static u32 guc_ctl_ads_flags(struct xe_guc *guc)
{
u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
return flags;
}
static u32 guc_ctl_wa_flags(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
u32 flags = 0;
if (XE_WA(gt, 22012773006))
flags |= GUC_WA_POLLCS;
if (XE_WA(gt, 14014475959))
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
if (XE_WA(gt, 22011391025))
flags |= GUC_WA_DUAL_QUEUE;
/*
* Wa_22011802037: FIXME - there's more to be done than simply setting
* this flag: make sure each CS is stopped when preparing for GT reset
* and wait for pending MI_FW.
*/
if (GRAPHICS_VERx100(xe) < 1270)
flags |= GUC_WA_PRE_PARSER;
if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
flags |= GUC_WA_CONTEXT_ISOLATION;
if (XE_WA(gt, 18020744125) &&
!xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
if (XE_WA(gt, 1509372804))
flags |= GUC_WA_RENDER_RST_RC6_EXIT;
if (XE_WA(gt, 14018913170))
flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
return flags;
}
static u32 guc_ctl_devid(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
return (((u32)xe->info.devid) << 16) | xe->info.revid;
}
static void guc_print_params(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
}
static void guc_init_params(struct xe_guc *guc)
{
u32 *params = guc->params;
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = 0;
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = 0;
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
guc_print_params(guc);
}
static void guc_init_params_post_hwconfig(struct xe_guc *guc)
{
u32 *params = guc->params;
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
guc_print_params(guc);
}
/*
* Initialize the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
static void guc_write_params(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
int i;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
}
static void guc_fini_hw(void *arg)
{
struct xe_guc *guc = arg;
struct xe_gt *gt = guc_to_gt(guc);
xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
xe_uc_fini_hw(&guc_to_gt(guc)->uc);
xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
}
/**
* xe_guc_comm_init_early - early initialization of GuC communication
* @guc: the &xe_guc to initialize
*
* Must be called prior to first MMIO communication with GuC firmware.
*/
void xe_guc_comm_init_early(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
if (xe_gt_is_media_type(gt))
guc->notify_reg = MED_GUC_HOST_INTERRUPT;
else
guc->notify_reg = GUC_HOST_INTERRUPT;
}
static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
{
struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
struct xe_device *xe = guc_to_xe(guc);
int ret;
if (!IS_DGFX(guc_to_xe(guc)))
return 0;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
if (ret)
return ret;
return 0;
}
static int vf_guc_init(struct xe_guc *guc)
{
int err;
xe_guc_comm_init_early(guc);
err = xe_guc_ct_init(&guc->ct);
if (err)
return err;
err = xe_guc_relay_init(&guc->relay);
if (err)
return err;
return 0;
}
int xe_guc_init(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
int ret;
guc->fw.type = XE_UC_FW_TYPE_GUC;
ret = xe_uc_fw_init(&guc->fw);
if (ret)
goto out;
if (!xe_uc_fw_is_enabled(&guc->fw))
return 0;
if (IS_SRIOV_VF(xe)) {
ret = vf_guc_init(guc);
if (ret)
goto out;
return 0;
}
ret = xe_guc_log_init(&guc->log);
if (ret)
goto out;
ret = xe_guc_ads_init(&guc->ads);
if (ret)
goto out;
ret = xe_guc_ct_init(&guc->ct);
if (ret)
goto out;
ret = xe_guc_relay_init(&guc->relay);
if (ret)
goto out;
ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
if (ret)
goto out;
guc_init_params(guc);
xe_guc_comm_init_early(guc);
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
return 0;
out:
xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
return ret;
}
static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
{
int err;
err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
if (err)
return err;
/* XXX xe_guc_db_mgr_init not needed for now */
return 0;
}
/**
* xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
* @guc: The GuC object
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_init_post_hwconfig(struct xe_guc *guc)
{
int ret;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return vf_guc_init_post_hwconfig(guc);
ret = xe_guc_realloc_post_hwconfig(guc);
if (ret)
return ret;
guc_init_params_post_hwconfig(guc);
ret = xe_guc_submit_init(guc, ~0);
if (ret)
return ret;
ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
if (ret)
return ret;
ret = xe_guc_pc_init(&guc->pc);
if (ret)
return ret;
return xe_guc_ads_init_post_hwconfig(&guc->ads);
}
int xe_guc_post_load_init(struct xe_guc *guc)
{
xe_guc_ads_populate_post_load(&guc->ads);
guc->submission_state.enabled = true;
return 0;
}
int xe_guc_reset(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 guc_status, gdrst;
int ret;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
if (IS_SRIOV_VF(gt_to_xe(gt)))
return xe_gt_sriov_vf_bootstrap(gt);
xe_mmio_write32(gt, GDRST, GRDOM_GUC);
ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
if (ret) {
xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
goto err_out;
}
guc_status = xe_mmio_read32(gt, GUC_STATUS);
if (!(guc_status & GS_MIA_IN_RESET)) {
xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
guc_status);
ret = -EIO;
goto err_out;
}
return 0;
err_out:
return ret;
}
static void guc_prepare_xfer(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
struct xe_device *xe = guc_to_xe(guc);
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
GUC_ENABLE_MIA_CLOCK_GATING;
if (GRAPHICS_VERx100(xe) < 1250)
shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
GUC_ENABLE_MIA_CACHING;
if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
/* Must program this register before loading the ucode with DMA */
xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
/* Make sure GuC receives ARAT interrupts */
xe_mmio_rmw32(gt, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
}
/*
* Supporting MMIO & in memory RSA
*/
static int guc_xfer_rsa(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 rsa[UOS_RSA_SCRATCH_COUNT];
size_t copied;
int i;
if (guc->fw.rsa_size > 256) {
u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
xe_uc_fw_rsa_offset(&guc->fw);
xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
return 0;
}
copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
if (copied < sizeof(rsa))
return -ENOMEM;
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
return 0;
}
/*
* Check a previously read GuC status register (GUC_STATUS) looking for
* known terminal states (either completion or failure) of either the
* microkernel status field or the boot ROM status field. Returns +1 for
* successful completion, -1 for failure and 0 for any intermediate state.
*/
static int guc_load_done(u32 status)
{
u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
switch (uk_val) {
case XE_GUC_LOAD_STATUS_READY:
return 1;
case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
case XE_GUC_LOAD_STATUS_DPC_ERROR:
case XE_GUC_LOAD_STATUS_EXCEPTION:
case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
return -1;
}
switch (br_val) {
case XE_BOOTROM_STATUS_NO_KEY_FOUND:
case XE_BOOTROM_STATUS_RSA_FAILED:
case XE_BOOTROM_STATUS_PAVPC_FAILED:
case XE_BOOTROM_STATUS_WOPCM_FAILED:
case XE_BOOTROM_STATUS_LOADLOC_FAILED:
case XE_BOOTROM_STATUS_JUMP_FAILED:
case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
case XE_BOOTROM_STATUS_EXCEPTION:
case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
return -1;
}
return 0;
}
static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
{
u32 freq;
int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
return ret ? ret : freq;
}
/*
* Wait for the GuC to start up.
*
* Measurements indicate this should take no more than 20ms (assuming the GT
* clock is at maximum frequency). However, thermal throttling and other issues
* can prevent the clock hitting max and thus making the load take significantly
* longer. Allow up to 200ms as a safety margin for real world worst case situations.
*
* However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
* lead to even longer times. E.g. if the GT is clamped to minimum frequency then
* the load times can be in the seconds range. So the timeout is increased for debug
* builds to ensure that problems can be correctly analysed. For release builds, the
* timeout is kept short so that users don't wait forever to find out that there is a
* problem. In either case, if the load took longer than is reasonable even with some
* 'sensible' throttling, then flag a warning because something is not right.
*
* Note that there is a limit on how long an individual usleep_range() can wait for,
* hence longer waits require wrapping a shorter wait in a loop.
*
* Note that the only reason an end user should hit the shorter timeout is in case of
* extreme thermal throttling. And a system that is that hot during boot is probably
* dead anyway!
*/
#if defined(CONFIG_DRM_XE_DEBUG)
#define GUC_LOAD_RETRY_LIMIT 20
#else
#define GUC_LOAD_RETRY_LIMIT 3
#endif
#define GUC_LOAD_TIME_WARN_MS 200
static void guc_wait_ucode(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
struct xe_guc_pc *guc_pc = >->uc.guc.pc;
ktime_t before, after, delta;
int load_done;
u32 status = 0;
int count = 0;
u64 delta_ms;
u32 before_freq;
before_freq = xe_guc_pc_get_act_freq(guc_pc);
before = ktime_get();
/*
* Note, can't use any kind of timing information from the call to xe_mmio_wait.
* It could return a thousand intermediate stages at random times. Instead, must
* manually track the total time taken and locally implement the timeout.
*/
do {
u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
int ret;
/*
* Wait for any change (intermediate or terminal) in the status register.
* Note, the return value is a don't care. The only failure code is timeout
* but the timeouts need to be accumulated over all the intermediate partial
* timeouts rather than allowing a huge timeout each time. So basically, need
* to treat a timeout no different to a value change.
*/
ret = xe_mmio_wait32_not(gt, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
last_status, 1000 * 1000, &status, false);
if (ret < 0)
count++;
after = ktime_get();
delta = ktime_sub(after, before);
delta_ms = ktime_to_ms(delta);
load_done = guc_load_done(status);
if (load_done != 0)
break;
if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
break;
xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
count, xe_guc_pc_get_act_freq(guc_pc),
guc_pc_get_cur_freq(guc_pc), status,
REG_FIELD_GET(GS_BOOTROM_MASK, status),
REG_FIELD_GET(GS_UKERNEL_MASK, status));
} while (1);
if (load_done != 1) {
u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
guc_pc_get_cur_freq(guc_pc), load_done);
xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
REG_FIELD_GET(GS_MIA_IN_RESET, status),
bootrom, ukernel,
REG_FIELD_GET(GS_MIA_MASK, status),
REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
switch (bootrom) {
case XE_BOOTROM_STATUS_NO_KEY_FOUND:
xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
xe_mmio_read32(gt, GUC_HEADER_INFO));
break;
case XE_BOOTROM_STATUS_RSA_FAILED:
xe_gt_err(gt, "firmware signature verification failed\n");
break;
case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
xe_gt_err(gt, "firmware production part check failure\n");
break;
}
switch (ukernel) {
case XE_GUC_LOAD_STATUS_EXCEPTION:
xe_gt_err(gt, "firmware exception. EIP: %#x\n",
xe_mmio_read32(gt, SOFT_SCRATCH(13)));
break;
case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
xe_gt_err(gt, "illegal register in save/restore workaround list\n");
break;
case XE_GUC_LOAD_STATUS_HWCONFIG_START:
xe_gt_err(gt, "still extracting hwconfig table.\n");
break;
}
xe_device_declare_wedged(gt_to_xe(gt));
} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
delta_ms, status, count);
xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
before_freq, xe_gt_throttle_get_limit_reasons(gt));
} else {
xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
before_freq, status, count);
}
}
static int __xe_guc_upload(struct xe_guc *guc)
{
int ret;
/* Raise GT freq to speed up HuC/GuC load */
xe_guc_pc_raise_unslice(&guc->pc);
guc_write_params(guc);
guc_prepare_xfer(guc);
/*
* Note that GuC needs the CSS header plus uKernel code to be copied
* by the DMA engine in one operation, whereas the RSA signature is
* loaded separately, either by copying it to the UOS_RSA_SCRATCH
* register (if key size <= 256) or through a ggtt-pinned vma (if key
* size > 256). The RSA size and therefore the way we provide it to the
* HW is fixed for each platform and hard-coded in the bootrom.
*/
ret = guc_xfer_rsa(guc);
if (ret)
goto out;
/*
* Current uCode expects the code to be loaded at 8k; locations below
* this are used for the stack.
*/
ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
if (ret)
goto out;
/* Wait for authentication */
guc_wait_ucode(guc);
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
return 0;
out:
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
return 0 /* FIXME: ret, don't want to stop load currently */;
}
static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
int ret;
ret = xe_gt_sriov_vf_bootstrap(gt);
if (ret)
return ret;
ret = xe_gt_sriov_vf_query_config(gt);
if (ret)
return ret;
ret = xe_guc_hwconfig_init(guc);
if (ret)
return ret;
ret = xe_guc_enable_communication(guc);
if (ret)
return ret;
ret = xe_gt_sriov_vf_connect(gt);
if (ret)
return ret;
ret = xe_gt_sriov_vf_query_runtime(gt);
if (ret)
return ret;
return 0;
}
/**
* xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
* @guc: The GuC object
*
* This function uploads a minimal GuC that does not support submissions but
* in a state where the hwconfig table can be read. Next, it reads and parses
* the hwconfig table so it can be used for subsequent steps in the driver load.
* Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
int ret;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return vf_guc_min_load_for_hwconfig(guc);
xe_guc_ads_populate_minimal(&guc->ads);
xe_guc_pc_init_early(&guc->pc);
ret = __xe_guc_upload(guc);
if (ret)
return ret;
ret = xe_guc_hwconfig_init(guc);
if (ret)
return ret;
ret = xe_guc_enable_communication(guc);
if (ret)
return ret;
return 0;
}
int xe_guc_upload(struct xe_guc *guc)
{
xe_guc_ads_populate(&guc->ads);
return __xe_guc_upload(guc);
}
static void guc_handle_mmio_msg(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 msg;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
msg &= XE_GUC_RECV_MSG_EXCEPTION |
XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
xe_gt_err(gt, "Received early GuC crash dump notification!\n");
if (msg & XE_GUC_RECV_MSG_EXCEPTION)
xe_gt_err(gt, "Received early GuC exception notification!\n");
}
static void guc_enable_irq(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 events = xe_gt_is_media_type(gt) ?
REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
/* Primary GuC and media GuC share a single enable bit */
xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
/*
* There are separate mask bits for primary and media GuCs, so use
* a RMW operation to avoid clobbering the other GuC's setting.
*/
xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
}
int xe_guc_enable_communication(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
int err;
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
struct xe_gt *gt = guc_to_gt(guc);
struct xe_tile *tile = gt_to_tile(gt);
err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
if (err)
return err;
} else {
guc_enable_irq(guc);
}
err = xe_guc_ct_enable(&guc->ct);
if (err)
return err;
guc_handle_mmio_msg(guc);
return 0;
}
int xe_guc_suspend(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 action[] = {
XE_GUC_ACTION_CLIENT_SOFT_RESET,
};
int ret;
ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
if (ret) {
xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
return ret;
}
xe_guc_sanitize(guc);
return 0;
}
void xe_guc_notify(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
const u32 default_notify_data = 0;
/*
* Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
* additional payload data to the GuC but this capability is not
* used by the firmware yet. Use default value in the meantime.
*/
xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
}
int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
{
u32 action[] = {
XE_GUC_ACTION_AUTHENTICATE_HUC,
rsa_addr
};
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
}
int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
u32 len, u32 *response_buf)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
u32 header, reply;
struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
int ret;
int i;
BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
xe_assert(xe, len);
xe_assert(xe, len <= VF_SW_FLAG_COUNT);
xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
GUC_HXG_ORIGIN_HOST);
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
GUC_HXG_TYPE_REQUEST);
retry:
/* Not in critical data-path, just do if else for GT type */
if (xe_gt_is_media_type(gt)) {
for (i = 0; i < len; ++i)
xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
request[i]);
xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
} else {
for (i = 0; i < len; ++i)
xe_mmio_write32(gt, VF_SW_FLAG(i),
request[i]);
xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
}
xe_guc_notify(guc);
ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
50000, &reply, false);
if (ret) {
timeout:
xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
request[0], reply);
return ret;
}
header = xe_mmio_read32(gt, reply_reg);
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
/*
* Once we got a BUSY reply we must wait again for the final
* response but this time we can't use ORIGIN mask anymore.
* To spot a right change in the reply, we take advantage that
* response SUCCESS and FAILURE differ only by the single bit
* and all other bits are set and can be used as a new mask.
*/
u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
ret = xe_mmio_wait32(gt, reply_reg, resp_mask, resp_mask,
1000000, &header, false);
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
GUC_HXG_ORIGIN_GUC))
goto proto;
if (unlikely(ret)) {
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_NO_RESPONSE_BUSY)
goto proto;
goto timeout;
}
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
request[0], reason);
goto retry;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_RESPONSE_FAILURE) {
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
request[0], error, hint);
return -ENXIO;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
request[0], header);
return -EPROTO;
}
/* Just copy entire possible message response */
if (response_buf) {
response_buf[0] = header;
for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
reply_reg.addr += sizeof(u32);
response_buf[i] = xe_mmio_read32(gt, reply_reg);
}
}
/* Use data from the GuC response as our return value */
return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}
int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
{
return xe_guc_mmio_send_recv(guc, request, len, NULL);
}
static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
{
struct xe_device *xe = guc_to_xe(guc);
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
GUC_ACTION_HOST2GUC_SELF_CFG),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
lower_32_bits(val)),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
upper_32_bits(val)),
};
int ret;
xe_assert(xe, len <= 2);
xe_assert(xe, len != 1 || !upper_32_bits(val));
/* Self config must go over MMIO */
ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
if (unlikely(ret < 0))
return ret;
if (unlikely(ret > 1))
return -EPROTO;
if (unlikely(!ret))
return -ENOKEY;
return 0;
}
int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
{
return guc_self_cfg(guc, key, 1, val);
}
int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
{
return guc_self_cfg(guc, key, 2, val);
}
void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
{
if (iir & GUC_INTR_GUC2HOST)
xe_guc_ct_irq_handler(&guc->ct);
}
void xe_guc_sanitize(struct xe_guc *guc)
{
xe_uc_fw_sanitize(&guc->fw);
xe_guc_ct_disable(&guc->ct);
guc->submission_state.enabled = false;
}
int xe_guc_reset_prepare(struct xe_guc *guc)
{
return xe_guc_submit_reset_prepare(guc);
}
void xe_guc_reset_wait(struct xe_guc *guc)
{
xe_guc_submit_reset_wait(guc);
}
void xe_guc_stop_prepare(struct xe_guc *guc)
{
if (!IS_SRIOV_VF(guc_to_xe(guc))) {
int err;
err = xe_guc_pc_stop(&guc->pc);
xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
ERR_PTR(err));
}
}
void xe_guc_stop(struct xe_guc *guc)
{
xe_guc_ct_stop(&guc->ct);
xe_guc_submit_stop(guc);
}
int xe_guc_start(struct xe_guc *guc)
{
if (!IS_SRIOV_VF(guc_to_xe(guc))) {
int err;
err = xe_guc_pc_start(&guc->pc);
xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n",
ERR_PTR(err));
}
return xe_guc_submit_start(guc);
}
void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 status;
int err;
int i;
xe_uc_fw_print(&guc->fw, p);
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return;
status = xe_mmio_read32(gt, GUC_STATUS);
drm_printf(p, "\nGuC status 0x%08x:\n", status);
drm_printf(p, "\tBootrom status = 0x%x\n",
REG_FIELD_GET(GS_BOOTROM_MASK, status));
drm_printf(p, "\tuKernel status = 0x%x\n",
REG_FIELD_GET(GS_UKERNEL_MASK, status));
drm_printf(p, "\tMIA Core status = 0x%x\n",
REG_FIELD_GET(GS_MIA_MASK, status));
drm_printf(p, "\tLog level = %d\n",
xe_guc_log_get_level(&guc->log));
drm_puts(p, "\nScratch registers:\n");
for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
drm_printf(p, "\t%2d: \t0x%x\n",
i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
}
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
xe_guc_ct_print(&guc->ct, p, false);
xe_guc_submit_print(guc, p);
}
|