summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/intel_ringbuffer.h
blob: 121294c602c3f8507482717ff061c4f972904280 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

#include <linux/hashtable.h>
#include "i915_gem_batch_pool.h"

#define I915_CMD_HASH_ORDER 9

/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))

/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

struct  intel_hw_status_page {
	u32		*page_addr;
	unsigned int	gfx_addr;
	struct		drm_i915_gem_object *obj;
};

#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)

#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)

#define I915_READ_HEAD(ring)  I915_READ(RING_HEAD((ring)->mmio_base))
#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)

#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)

#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)

#define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
#define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)

/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
#define GEN8_WAIT_OFFSET(__ring, from)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))

enum intel_ring_hangcheck_action {
	HANGCHECK_IDLE = 0,
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};

#define HANGCHECK_SCORE_RING_HUNG 31

struct intel_ring_hangcheck {
	u64 acthd;
	u32 seqno;
	unsigned user_interrupts;
	int score;
	enum intel_ring_hangcheck_action action;
	int deadlock;
	u32 instdone[I915_NUM_INSTDONE_REG];
};

struct intel_ringbuffer {
	struct drm_i915_gem_object *obj;
	void __iomem *virtual_start;
	struct i915_vma *vma;

	struct intel_engine_cs *engine;
	struct list_head link;

	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

struct i915_gem_context;
struct drm_i915_reg_table;

/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
struct  i915_ctx_workarounds {
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
	struct drm_i915_gem_object *obj;
};

struct drm_i915_gem_request;

struct intel_engine_cs {
	struct drm_i915_private *i915;
	const char	*name;
	enum intel_engine_id {
		RCS = 0,
		BCS,
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
	} id;
#define I915_NUM_ENGINES 5
#define _VCS(n) (VCS + (n))
	unsigned int exec_id;
	unsigned int hw_id;
	unsigned int guc_id; /* XXX same as hw_id? */
	u32		mmio_base;
	struct intel_ringbuffer *buffer;
	struct list_head buffers;

	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
		spinlock_t lock; /* protects the lists of requests */
		struct rb_root waiters; /* sorted by retirement, priority */
		struct rb_root signals; /* sorted by retirement */
		struct intel_wait *first_wait; /* oldest waiter by retirement */
		struct task_struct *tasklet; /* bh for user interrupts */
		struct task_struct *signaler; /* used for fence signalling */
		struct drm_i915_gem_request *first_signal;
		struct timer_list fake_irq; /* used after a missed interrupt */
		bool irq_enabled;
		bool rpm_wakelock;
	} breadcrumbs;

	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

	struct intel_hw_status_page status_page;
	struct i915_ctx_workarounds wa_ctx;

	bool		irq_posted;
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
	void		(*irq_enable)(struct intel_engine_cs *ring);
	void		(*irq_disable)(struct intel_engine_cs *ring);

	int		(*init_hw)(struct intel_engine_cs *ring);

	int		(*init_context)(struct drm_i915_gem_request *req);

	void		(*write_tail)(struct intel_engine_cs *ring,
				      u32 value);
	int __must_check (*flush)(struct drm_i915_gem_request *req,
				  u32	invalidate_domains,
				  u32	flush_domains);
	int		(*add_request)(struct drm_i915_gem_request *req);
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
	void		(*irq_seqno_barrier)(struct intel_engine_cs *ring);
	int		(*dispatch_execbuffer)(struct drm_i915_gem_request *req,
					       u64 offset, u32 length,
					       unsigned dispatch_flags);
#define I915_DISPATCH_SECURE 0x1
#define I915_DISPATCH_PINNED 0x2
#define I915_DISPATCH_RS     0x4
	void		(*cleanup)(struct intel_engine_cs *ring);

	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
	struct {
		u32	sync_seqno[I915_NUM_ENGINES-1];

		union {
			struct {
				/* our mbox written by others */
				u32		wait[I915_NUM_ENGINES];
				/* mboxes this ring signals to */
				i915_reg_t	signal[I915_NUM_ENGINES];
			} mbox;
			u64		signal_ggtt[I915_NUM_ENGINES];
		};

		/* AKA wait() */
		int	(*sync_to)(struct drm_i915_gem_request *to_req,
				   struct intel_engine_cs *from,
				   u32 seqno);
		int	(*signal)(struct drm_i915_gem_request *signaller_req,
				  /* num_dwords needed by caller */
				  unsigned int num_dwords);
	} semaphore;

	/* Execlists */
	struct tasklet_struct irq_tasklet;
	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
	struct list_head execlist_queue;
	unsigned int fw_domains;
	unsigned int next_context_status_buffer;
	unsigned int idle_lite_restore_wa;
	bool disable_lite_restore_wa;
	u32 ctx_desc_template;
	int		(*emit_request)(struct drm_i915_gem_request *request);
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 invalidate_domains,
				      u32 flush_domains);
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, unsigned dispatch_flags);

	/**
	 * List of objects currently involved in rendering from the
	 * ringbuffer.
	 *
	 * Includes buffers having the contents of their GPU caches
	 * flushed, not necessarily primitives.  last_read_req
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * List of breadcrumbs associated with GPU requests currently
	 * outstanding.
	 */
	struct list_head request_list;

	/**
	 * Seqno of request most recently submitted to request_list.
	 * Used exclusively by hang checker to avoid grabbing lock while
	 * inspecting request list.
	 */
	u32 last_submitted_seqno;
	unsigned user_interrupts;

	bool gpu_caches_dirty;

	struct i915_gem_context *last_context;

	struct intel_ring_hangcheck hangcheck;

	struct {
		struct drm_i915_gem_object *obj;
		u32 gtt_offset;
	} scratch;

	bool needs_cmd_parser;

	/*
	 * Table of commands the command parser needs to know about
	 * for this ring.
	 */
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
	 * If the command parser finds an entry for a command in the ring's
	 * cmd_tables, it gets the command's length based on the table entry.
	 * If not, it calls this function to determine the per-ring length field
	 * encoding for the command (i.e. certain opcode ranges use certain bits
	 * to encode the command length in the header).
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
};

static inline bool
intel_engine_initialized(const struct intel_engine_cs *engine)
{
	return engine->i915 != NULL;
}

static inline unsigned
intel_engine_flag(const struct intel_engine_cs *engine)
{
	return 1 << engine->id;
}

static inline u32
intel_ring_sync_index(struct intel_engine_cs *engine,
		      struct intel_engine_cs *other)
{
	int idx;

	/*
	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
	 */

	idx = (other - engine) - 1;
	if (idx < 0)
		idx += I915_NUM_ENGINES;

	return idx;
}

static inline void
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
{
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
}

static inline u32
intel_read_status_page(struct intel_engine_cs *engine, int reg)
{
	/* Ensure that the compiler doesn't optimize away the load. */
	return READ_ONCE(engine->status_page.page_addr[reg]);
}

static inline void
intel_write_status_page(struct intel_engine_cs *engine,
			int reg, u32 value)
{
	engine->status_page.page_addr[reg] = value;
}

/*
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
 * 0x20-0x2f: Reserved (Gen6+)
 *
 * The area from dword 0x30 to 0x3ff is available for driver usage.
 */
#define I915_GEM_HWS_INDEX		0x30
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)

struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
				     struct intel_ringbuffer *ringbuf);
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
void intel_ringbuffer_free(struct intel_ringbuffer *ring);

void intel_stop_engine(struct intel_engine_cs *engine);
void intel_cleanup_engine(struct intel_engine_cs *engine);

int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
static inline void intel_ring_emit(struct intel_engine_cs *engine,
				   u32 data)
{
	struct intel_ringbuffer *ringbuf = engine->buffer;
	iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
	ringbuf->tail += 4;
}
static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
				       i915_reg_t reg)
{
	intel_ring_emit(engine, i915_mmio_reg_offset(reg));
}
static inline void intel_ring_advance(struct intel_engine_cs *engine)
{
	struct intel_ringbuffer *ringbuf = engine->buffer;
	ringbuf->tail &= ringbuf->size - 1;
}
int __intel_ring_space(int head, int tail, int size);
void intel_ring_update_space(struct intel_ringbuffer *ringbuf);

int __must_check intel_engine_idle(struct intel_engine_cs *engine);
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);

int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
void intel_fini_pipe_control(struct intel_engine_cs *engine);

int intel_init_render_ring_buffer(struct drm_device *dev);
int intel_init_bsd_ring_buffer(struct drm_device *dev);
int intel_init_bsd2_ring_buffer(struct drm_device *dev);
int intel_init_blt_ring_buffer(struct drm_device *dev);
int intel_init_vebox_ring_buffer(struct drm_device *dev);

u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}

int init_workarounds_ring(struct intel_engine_cs *engine);

static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
{
	return ringbuf->tail;
}

/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 */
#define MIN_SPACE_FOR_ADD_REQUEST 336

static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
struct intel_wait {
	struct rb_node node;
	struct task_struct *tsk;
	u32 seqno;
};

struct intel_signal_node {
	struct rb_node node;
	struct intel_wait wait;
};

int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);

static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->breadcrumbs.tasklet);
}

static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
{
	bool wakeup = false;
	struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.tasklet);
	/* Note that for this not to dangerously chase a dangling pointer,
	 * the caller is responsible for ensure that the task remain valid for
	 * wake_up_process() i.e. that the RCU grace period cannot expire.
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
	if (tsk)
		wakeup = wake_up_process(tsk);
	return wakeup;
}

void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_kick_waiters(struct drm_i915_private *i915);
unsigned int intel_kick_signalers(struct drm_i915_private *i915);

#endif /* _INTEL_RINGBUFFER_H_ */