summaryrefslogtreecommitdiff
path: root/drivers/firewire/core-card.c
blob: 6ac5ff20a2fe22f1c3c5a7010ca0af87caf4c446 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
 */

#include <linux/bug.h>
#include <linux/completion.h>
#include <linux/crc-itu-t.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>

#include <linux/atomic.h>
#include <asm/byteorder.h>

#include "core.h"

#define define_fw_printk_level(func, kern_level)		\
void func(const struct fw_card *card, const char *fmt, ...)	\
{								\
	struct va_format vaf;					\
	va_list args;						\
								\
	va_start(args, fmt);					\
	vaf.fmt = fmt;						\
	vaf.va = &args;						\
	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
	       dev_name(card->device), &vaf);			\
	va_end(args);						\
}
define_fw_printk_level(fw_err, KERN_ERR);
define_fw_printk_level(fw_notice, KERN_NOTICE);

int fw_compute_block_crc(__be32 *block)
{
	int length;
	u16 crc;

	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
	*block |= cpu_to_be32(crc);

	return length;
}

static DEFINE_MUTEX(card_mutex);
static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

static __be32 tmp_config_rom[256];
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
static size_t config_rom_length = 1 + 4 + 1 + 1;

#define BIB_CRC(v)		((v) <<  0)
#define BIB_CRC_LENGTH(v)	((v) << 16)
#define BIB_INFO_LENGTH(v)	((v) << 24)
#define BIB_BUS_NAME		0x31333934 /* "1394" */
#define BIB_LINK_SPEED(v)	((v) <<  0)
#define BIB_GENERATION(v)	((v) <<  4)
#define BIB_MAX_ROM(v)		((v) <<  8)
#define BIB_MAX_RECEIVE(v)	((v) << 12)
#define BIB_CYC_CLK_ACC(v)	((v) << 16)
#define BIB_PMC			((1) << 27)
#define BIB_BMC			((1) << 28)
#define BIB_ISC			((1) << 29)
#define BIB_CMC			((1) << 30)
#define BIB_IRMC		((1) << 31)
#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */

/*
 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 * but we have to make it longer because there are many devices whose firmware
 * is just too slow for that.
 */
#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)

#define CANON_OUI		0x000085

static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
{
	struct fw_descriptor *desc;
	int i, j, k, length;

	/*
	 * Initialize contents of config rom buffer.  On the OHCI
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
	 * sure the contents of bus info block in host memory matches
	 * the version stored in the OHCI registers.
	 */

	config_rom[0] = cpu_to_be32(
		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
	config_rom[2] = cpu_to_be32(
		BIB_LINK_SPEED(card->link_speed) |
		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
		BIB_MAX_ROM(2) |
		BIB_MAX_RECEIVE(card->max_receive) |
		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
	config_rom[3] = cpu_to_be32(card->guid >> 32);
	config_rom[4] = cpu_to_be32(card->guid);

	/* Generate root directory. */
	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
	i = 7;
	j = 7 + descriptor_count;

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		if (desc->immediate > 0)
			config_rom[i++] = cpu_to_be32(desc->immediate);
		config_rom[i] = cpu_to_be32(desc->key | (j - i));
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		for (k = 0; k < desc->length; k++)
			config_rom[i + k] = cpu_to_be32(desc->data[k]);
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
	for (i = 0; i < j; i += length + 1)
		length = fw_compute_block_crc(config_rom + i);

	WARN_ON(j != config_rom_length);
}

static void update_config_roms(void)
{
	struct fw_card *card;

	list_for_each_entry (card, &card_list, link) {
		generate_config_rom(card, tmp_config_rom);
		card->driver->set_config_rom(card, tmp_config_rom,
					     config_rom_length);
	}
}

static size_t required_space(struct fw_descriptor *desc)
{
	/* descriptor + entry into root dir + optional immediate entry */
	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
}

int fw_core_add_descriptor(struct fw_descriptor *desc)
{
	size_t i;
	int ret;

	/*
	 * Check descriptor is valid; the length of all blocks in the
	 * descriptor has to add up to exactly the length of the
	 * block.
	 */
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
		return -EINVAL;

	mutex_lock(&card_mutex);

	if (config_rom_length + required_space(desc) > 256) {
		ret = -EBUSY;
	} else {
		list_add_tail(&desc->link, &descriptor_list);
		config_rom_length += required_space(desc);
		descriptor_count++;
		if (desc->immediate > 0)
			descriptor_count++;
		update_config_roms();
		ret = 0;
	}

	mutex_unlock(&card_mutex);

	return ret;
}
EXPORT_SYMBOL(fw_core_add_descriptor);

void fw_core_remove_descriptor(struct fw_descriptor *desc)
{
	mutex_lock(&card_mutex);

	list_del(&desc->link);
	config_rom_length -= required_space(desc);
	descriptor_count--;
	if (desc->immediate > 0)
		descriptor_count--;
	update_config_roms();

	mutex_unlock(&card_mutex);
}
EXPORT_SYMBOL(fw_core_remove_descriptor);

static int reset_bus(struct fw_card *card, bool short_reset)
{
	int reg = short_reset ? 5 : 1;
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;

	return card->driver->update_phy_reg(card, reg, 0, bit);
}

void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
{
	/* We don't try hard to sort out requests of long vs. short resets. */
	card->br_short = short_reset;

	/* Use an arbitrary short delay to combine multiple reset requests. */
	fw_card_get(card);
	if (!queue_delayed_work(fw_workqueue, &card->br_work,
				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
		fw_card_put(card);
}
EXPORT_SYMBOL(fw_schedule_bus_reset);

static void br_work(struct work_struct *work)
{
	struct fw_card *card = container_of(work, struct fw_card, br_work.work);

	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
	if (card->reset_jiffies != 0 &&
	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
			fw_card_put(card);
		return;
	}

	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
	reset_bus(card, card->br_short);
	fw_card_put(card);
}

static void allocate_broadcast_channel(struct fw_card *card, int generation)
{
	int channel, bandwidth = 0;

	if (!card->broadcast_channel_allocated) {
		fw_iso_resource_manage(card, generation, 1ULL << 31,
				       &channel, &bandwidth, true);
		if (channel != 31) {
			fw_notice(card, "failed to allocate broadcast channel\n");
			return;
		}
		card->broadcast_channel_allocated = true;
	}

	device_for_each_child(card->device, (void *)(long)generation,
			      fw_device_set_broadcast_channel);
}

static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
{
	fw_card_get(card);
	if (!schedule_delayed_work(&card->bm_work, delay))
		fw_card_put(card);
}

static void bm_work(struct work_struct *work)
{
	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
	struct fw_device *root_device, *irm_device;
	struct fw_node *root_node;
	int root_id, new_root_id, irm_id, bm_id, local_id;
	int gap_count, generation, grace, rcode;
	bool do_reset = false;
	bool root_device_is_running;
	bool root_device_is_cmc;
	bool irm_is_1394_1995_only;
	bool keep_this_irm;
	__be32 transaction_data[2];

	spin_lock_irq(&card->lock);

	if (card->local_node == NULL) {
		spin_unlock_irq(&card->lock);
		goto out_put_card;
	}

	generation = card->generation;

	root_node = card->root_node;
	fw_node_get(root_node);
	root_device = root_node->data;
	root_device_is_running = root_device &&
			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
	root_device_is_cmc = root_device && root_device->cmc;

	irm_device = card->irm_node->data;
	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
			(irm_device->config_rom[2] & 0x000000f0) == 0;

	/* Canon MV5i works unreliably if it is not root node. */
	keep_this_irm = irm_device && irm_device->config_rom &&
			irm_device->config_rom[3] >> 8 == CANON_OUI;

	root_id  = root_node->node_id;
	irm_id   = card->irm_node->node_id;
	local_id = card->local_node->node_id;

	grace = time_after64(get_jiffies_64(),
			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));

	if ((is_next_generation(generation, card->bm_generation) &&
	     !card->bm_abdicate) ||
	    (card->bm_generation != generation && grace)) {
		/*
		 * This first step is to figure out who is IRM and
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
		 * next generation.
		 */

		if (!card->irm_node->link_on) {
			new_root_id = local_id;
			fw_notice(card, "%s, making local node (%02x) root\n",
				  "IRM has link off", new_root_id);
			goto pick_me;
		}

		if (irm_is_1394_1995_only && !keep_this_irm) {
			new_root_id = local_id;
			fw_notice(card, "%s, making local node (%02x) root\n",
				  "IRM is not 1394a compliant", new_root_id);
			goto pick_me;
		}

		transaction_data[0] = cpu_to_be32(0x3f);
		transaction_data[1] = cpu_to_be32(local_id);

		spin_unlock_irq(&card->lock);

		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
				transaction_data, 8);

		if (rcode == RCODE_GENERATION)
			/* Another bus reset, BM work has been rescheduled. */
			goto out;

		bm_id = be32_to_cpu(transaction_data[0]);

		spin_lock_irq(&card->lock);
		if (rcode == RCODE_COMPLETE && generation == card->generation)
			card->bm_node_id =
			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
		spin_unlock_irq(&card->lock);

		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
			/* Somebody else is BM.  Only act as IRM. */
			if (local_id == irm_id)
				allocate_broadcast_channel(card, generation);

			goto out;
		}

		if (rcode == RCODE_SEND_ERROR) {
			/*
			 * We have been unable to send the lock request due to
			 * some local problem.  Let's try again later and hope
			 * that the problem has gone away by then.
			 */
			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
			goto out;
		}

		spin_lock_irq(&card->lock);

		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
			/*
			 * The lock request failed, maybe the IRM
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
			 * root, and thus, IRM.
			 */
			new_root_id = local_id;
			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
				  fw_rcode_string(rcode), new_root_id);
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
		/*
		 * We weren't BM in the last generation, and the last
		 * bus reset is less than 125ms ago.  Reschedule this job.
		 */
		spin_unlock_irq(&card->lock);
		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
		goto out;
	}

	/*
	 * We're bus manager for this generation, so next step is to
	 * make sure we have an active cycle master and do gap count
	 * optimization.
	 */
	card->bm_generation = generation;

	if (root_device == NULL) {
		/*
		 * Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root.
		 */
		new_root_id = local_id;
	} else if (!root_device_is_running) {
		/*
		 * If we haven't probed this device yet, bail out now
		 * and let's try again once that's done.
		 */
		spin_unlock_irq(&card->lock);
		goto out;
	} else if (root_device_is_cmc) {
		/*
		 * We will send out a force root packet for this
		 * node as part of the gap count optimization.
		 */
		new_root_id = root_id;
	} else {
		/*
		 * Current root has an active link layer and we
		 * successfully read the config rom, but it's not
		 * cycle master capable.
		 */
		new_root_id = local_id;
	}

 pick_me:
	/*
	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
	 * the typically much larger 1394b beta repeater delays though.
	 */
	if (!card->beta_repeaters_present &&
	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[root_node->max_hops];
	else
		gap_count = 63;

	/*
	 * Finally, figure out if we should do a reset or not.  If we have
	 * done less than 5 resets with the same physical topology and we
	 * have either a new root or a new gap count setting, let's do it.
	 */

	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
		do_reset = true;

	spin_unlock_irq(&card->lock);

	if (do_reset) {
		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
			  new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
		reset_bus(card, true);
		/* Will allocate broadcast channel after the reset. */
		goto out;
	}

	if (root_device_is_cmc) {
		/*
		 * Make sure that the cycle master sends cycle start packets.
		 */
		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				root_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_STATE_SET,
				transaction_data, 4);
		if (rcode == RCODE_GENERATION)
			goto out;
	}

	if (local_id == irm_id)
		allocate_broadcast_channel(card, generation);

 out:
	fw_node_put(root_node);
 out_put_card:
	fw_card_put(card);
}

void fw_card_initialize(struct fw_card *card,
			const struct fw_card_driver *driver,
			struct device *device)
{
	static atomic_t index = ATOMIC_INIT(-1);

	card->index = atomic_inc_return(&index);
	card->driver = driver;
	card->device = device;
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
	card->split_timeout_jiffies =
			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
	card->color = 0;
	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;

	kref_init(&card->kref);
	init_completion(&card->done);
	INIT_LIST_HEAD(&card->transaction_list);
	INIT_LIST_HEAD(&card->phy_receiver_list);
	spin_lock_init(&card->lock);

	card->local_node = NULL;

	INIT_DELAYED_WORK(&card->br_work, br_work);
	INIT_DELAYED_WORK(&card->bm_work, bm_work);
}
EXPORT_SYMBOL(fw_card_initialize);

int fw_card_add(struct fw_card *card,
		u32 max_receive, u32 link_speed, u64 guid)
{
	int ret;

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

	mutex_lock(&card_mutex);

	generate_config_rom(card, tmp_config_rom);
	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
	if (ret == 0)
		list_add_tail(&card->link, &card_list);

	mutex_unlock(&card_mutex);

	return ret;
}
EXPORT_SYMBOL(fw_card_add);

/*
 * The next few functions implement a dummy driver that is used once a card
 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
 * as all IO to the card will be handled (and failed) by the dummy driver
 * instead of calling into the module.  Only functions for iso context
 * shutdown still need to be provided by the card driver.
 *
 * .read/write_csr() should never be called anymore after the dummy driver
 * was bound since they are only used within request handler context.
 * .set_config_rom() is never called since the card is taken out of card_list
 * before switching to the dummy driver.
 */

static int dummy_read_phy_reg(struct fw_card *card, int address)
{
	return -ENODEV;
}

static int dummy_update_phy_reg(struct fw_card *card, int address,
				int clear_bits, int set_bits)
{
	return -ENODEV;
}

static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
{
	packet->callback(packet, card, RCODE_CANCELLED);
}

static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
{
	packet->callback(packet, card, RCODE_CANCELLED);
}

static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	return -ENOENT;
}

static int dummy_enable_phys_dma(struct fw_card *card,
				 int node_id, int generation)
{
	return -ENODEV;
}

static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
				int type, int channel, size_t header_size)
{
	return ERR_PTR(-ENODEV);
}

static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
{
	return 0;
}

static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
{
}

static int dummy_start_iso(struct fw_iso_context *ctx,
			   s32 cycle, u32 sync, u32 tags)
{
	return -ENODEV;
}

static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
{
	return -ENODEV;
}

static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
			   struct fw_iso_buffer *buffer, unsigned long payload)
{
	return -ENODEV;
}

static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
{
}

static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
{
	return -ENODEV;
}

static const struct fw_card_driver dummy_driver_template = {
	.read_phy_reg		= dummy_read_phy_reg,
	.update_phy_reg		= dummy_update_phy_reg,
	.send_request		= dummy_send_request,
	.send_response		= dummy_send_response,
	.cancel_packet		= dummy_cancel_packet,
	.enable_phys_dma	= dummy_enable_phys_dma,
	.read_csr		= dummy_read_csr,
	.write_csr		= dummy_write_csr,
	.allocate_iso_context	= dummy_allocate_iso_context,
	.start_iso		= dummy_start_iso,
	.set_iso_channels	= dummy_set_iso_channels,
	.queue_iso		= dummy_queue_iso,
	.flush_queue_iso	= dummy_flush_queue_iso,
	.flush_iso_completions	= dummy_flush_iso_completions,
};

void fw_card_release(struct kref *kref)
{
	struct fw_card *card = container_of(kref, struct fw_card, kref);

	complete(&card->done);
}
EXPORT_SYMBOL_GPL(fw_card_release);

void fw_core_remove_card(struct fw_card *card)
{
	struct fw_card_driver dummy_driver = dummy_driver_template;
	unsigned long flags;

	card->driver->update_phy_reg(card, 4,
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
	fw_schedule_bus_reset(card, false, true);

	mutex_lock(&card_mutex);
	list_del_init(&card->link);
	mutex_unlock(&card_mutex);

	/* Switch off most of the card driver interface. */
	dummy_driver.free_iso_context	= card->driver->free_iso_context;
	dummy_driver.stop_iso		= card->driver->stop_iso;
	card->driver = &dummy_driver;

	spin_lock_irqsave(&card->lock, flags);
	fw_destroy_nodes(card);
	spin_unlock_irqrestore(&card->lock, flags);

	/* Wait for all users, especially device workqueue jobs, to finish. */
	fw_card_put(card);
	wait_for_completion(&card->done);

	WARN_ON(!list_empty(&card->transaction_list));
}
EXPORT_SYMBOL(fw_core_remove_card);

/**
 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
 *			    for controller card.
 * @card: The instance of card for 1394 OHCI controller.
 * @cycle_time: The mutual reference to value of cycle time for the read operation.
 *
 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
 * controller card. This function accesses the region without any lock primitives or IRQ mask.
 * When returning successfully, the content of @value argument has value aligned to host endianness,
 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
 *
 * Context: Any context.
 * Return:
 * * 0 - Read successfully.
 * * -ENODEV - The controller is unavailable due to being removed or unbound.
 */
int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
{
	if (card->driver->read_csr == dummy_read_csr)
		return -ENODEV;

	// It's possible to switch to dummy driver between the above and the below. This is the best
	// effort to return -ENODEV.
	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
	return 0;
}
EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);