summaryrefslogtreecommitdiff
path: root/drivers/edac/skx_edac.c
blob: 912c4930c9efb8e58116731c9711d53311515574 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
/*
 * EDAC driver for Intel(R) Xeon(R) Skylake processors
 * Copyright (c) 2016, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>

#include "edac_module.h"

#define EDAC_MOD_STR    "skx_edac"

/*
 * Debug macros
 */
#define skx_printk(level, fmt, arg...)			\
	edac_printk(level, "skx", fmt, ##arg)

#define skx_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi) \
	(((v) & GENMASK_ULL((hi), (lo))) >> (lo))

static LIST_HEAD(skx_edac_list);

static u64 skx_tolm, skx_tohm;

#define NUM_IMC			2	/* memory controllers per socket */
#define NUM_CHANNELS		3	/* channels per memory controller */
#define NUM_DIMMS		2	/* Max DIMMS per channel */

#define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
#define MASK29	0x1FFFFFFF		/* Mask for 2^29 */

/*
 * Each cpu socket contains some pci devices that provide global
 * information, and also some that are local to each of the two
 * memory controllers on the die.
 */
struct skx_dev {
	struct list_head	list;
	u8			bus[4];
	int			seg;
	struct pci_dev	*sad_all;
	struct pci_dev	*util_all;
	u32	mcroute;
	struct skx_imc {
		struct mem_ctl_info *mci;
		u8	mc;	/* system wide mc# */
		u8	lmc;	/* socket relative mc# */
		u8	src_id, node_id;
		struct skx_channel {
			struct pci_dev *cdev;
			struct skx_dimm {
				u8	close_pg;
				u8	bank_xor_enable;
				u8	fine_grain_bank;
				u8	rowbits;
				u8	colbits;
			} dimms[NUM_DIMMS];
		} chan[NUM_CHANNELS];
	} imc[NUM_IMC];
};
static int skx_num_sockets;

struct skx_pvt {
	struct skx_imc	*imc;
};

struct decoded_addr {
	struct skx_dev *dev;
	u64	addr;
	int	socket;
	int	imc;
	int	channel;
	u64	chan_addr;
	int	sktways;
	int	chanways;
	int	dimm;
	int	rank;
	int	channel_rank;
	u64	rank_address;
	int	row;
	int	column;
	int	bank_address;
	int	bank_group;
};

static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
{
	struct skx_dev *d;

	list_for_each_entry(d, &skx_edac_list, list) {
		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
			return d;
	}

	return NULL;
}

enum munittype {
	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
};

struct munit {
	u16	did;
	u16	devfn[NUM_IMC];
	u8	busidx;
	u8	per_socket;
	enum munittype mtype;
};

/*
 * List of PCI device ids that we need together with some device
 * number and function numbers to tell which memory controller the
 * device belongs to.
 */
static const struct munit skx_all_munits[] = {
	{ 0x2054, { }, 1, 1, SAD_ALL },
	{ 0x2055, { }, 1, 1, UTIL_ALL },
	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
	{ 0x208e, { }, 1, 0, SAD },
	{ }
};

/*
 * We use the per-socket device 0x2016 to count how many sockets are present,
 * and to detemine which PCI buses are associated with each socket. Allocate
 * and build the full list of all the skx_dev structures that we need here.
 */
static int get_all_bus_mappings(void)
{
	struct pci_dev *pdev, *prev;
	struct skx_dev *d;
	u32 reg;
	int ndev = 0;

	prev = NULL;
	for (;;) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
		if (!pdev)
			break;
		ndev++;
		d = kzalloc(sizeof(*d), GFP_KERNEL);
		if (!d) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		d->seg = pci_domain_nr(pdev->bus);
		pci_read_config_dword(pdev, 0xCC, &reg);
		d->bus[0] =  GET_BITFIELD(reg, 0, 7);
		d->bus[1] =  GET_BITFIELD(reg, 8, 15);
		d->bus[2] =  GET_BITFIELD(reg, 16, 23);
		d->bus[3] =  GET_BITFIELD(reg, 24, 31);
		edac_dbg(2, "busses: %x, %x, %x, %x\n",
			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
		list_add_tail(&d->list, &skx_edac_list);
		skx_num_sockets++;
		prev = pdev;
	}

	return ndev;
}

static int get_all_munits(const struct munit *m)
{
	struct pci_dev *pdev, *prev;
	struct skx_dev *d;
	u32 reg;
	int i = 0, ndev = 0;

	prev = NULL;
	for (;;) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
		if (!pdev)
			break;
		ndev++;
		if (m->per_socket == NUM_IMC) {
			for (i = 0; i < NUM_IMC; i++)
				if (m->devfn[i] == pdev->devfn)
					break;
			if (i == NUM_IMC)
				goto fail;
		}
		d = get_skx_dev(pdev->bus, m->busidx);
		if (!d)
			goto fail;

		/* Be sure that the device is enabled */
		if (unlikely(pci_enable_device(pdev) < 0)) {
			skx_printk(KERN_ERR,
				"Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
			goto fail;
		}

		switch (m->mtype) {
		case CHAN0: case CHAN1: case CHAN2:
			pci_dev_get(pdev);
			d->imc[i].chan[m->mtype].cdev = pdev;
			break;
		case SAD_ALL:
			pci_dev_get(pdev);
			d->sad_all = pdev;
			break;
		case UTIL_ALL:
			pci_dev_get(pdev);
			d->util_all = pdev;
			break;
		case SAD:
			/*
			 * one of these devices per core, including cores
			 * that don't exist on this SKU. Ignore any that
			 * read a route table of zero, make sure all the
			 * non-zero values match.
			 */
			pci_read_config_dword(pdev, 0xB4, &reg);
			if (reg != 0) {
				if (d->mcroute == 0)
					d->mcroute = reg;
				else if (d->mcroute != reg) {
					skx_printk(KERN_ERR,
						"mcroute mismatch\n");
					goto fail;
				}
			}
			ndev--;
			break;
		}

		prev = pdev;
	}

	return ndev;
fail:
	pci_dev_put(pdev);
	return -ENODEV;
}

static const struct x86_cpu_id skx_cpuids[] = {
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);

static u8 get_src_id(struct skx_dev *d)
{
	u32 reg;

	pci_read_config_dword(d->util_all, 0xF0, &reg);

	return GET_BITFIELD(reg, 12, 14);
}

static u8 skx_get_node_id(struct skx_dev *d)
{
	u32 reg;

	pci_read_config_dword(d->util_all, 0xF4, &reg);

	return GET_BITFIELD(reg, 0, 2);
}

static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
			 int maxval, char *name)
{
	u32 val = GET_BITFIELD(reg, lobit, hibit);

	if (val < minval || val > maxval) {
		edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
		return -EINVAL;
	}
	return val + add;
}

#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD((mtr), 15, 15)

#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")

static int get_width(u32 mtr)
{
	switch (GET_BITFIELD(mtr, 8, 9)) {
	case 0:
		return DEV_X4;
	case 1:
		return DEV_X8;
	case 2:
		return DEV_X16;
	}
	return DEV_UNKNOWN;
}

static int skx_get_hi_lo(void)
{
	struct pci_dev *pdev;
	u32 reg;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
	if (!pdev) {
		edac_dbg(0, "Can't get tolm/tohm\n");
		return -ENODEV;
	}

	pci_read_config_dword(pdev, 0xD0, &reg);
	skx_tolm = reg;
	pci_read_config_dword(pdev, 0xD4, &reg);
	skx_tohm = reg;
	pci_read_config_dword(pdev, 0xD8, &reg);
	skx_tohm |= (u64)reg << 32;

	pci_dev_put(pdev);
	edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);

	return 0;
}

static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
			 struct skx_imc *imc, int chan, int dimmno)
{
	int  banks = 16, ranks, rows, cols, npages;
	u64 size;

	if (!IS_DIMM_PRESENT(mtr))
		return 0;
	ranks = numrank(mtr);
	rows = numrow(mtr);
	cols = numcol(mtr);

	/*
	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
	 */
	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
	npages = MiB_TO_PAGES(size);

	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
		 imc->mc, chan, dimmno, size, npages,
		 banks, 1 << ranks, rows, cols);

	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
	imc->chan[chan].dimms[dimmno].rowbits = rows;
	imc->chan[chan].dimms[dimmno].colbits = cols;

	dimm->nr_pages = npages;
	dimm->grain = 32;
	dimm->dtype = get_width(mtr);
	dimm->mtype = MEM_DDR4;
	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
		 imc->src_id, imc->lmc, chan, dimmno);

	return 1;
}

#define SKX_GET_MTMTR(dev, reg) \
	pci_read_config_dword((dev), 0x87c, &reg)

static bool skx_check_ecc(struct pci_dev *pdev)
{
	u32 mtmtr;

	SKX_GET_MTMTR(pdev, mtmtr);

	return !!GET_BITFIELD(mtmtr, 2, 2);
}

static int skx_get_dimm_config(struct mem_ctl_info *mci)
{
	struct skx_pvt *pvt = mci->pvt_info;
	struct skx_imc *imc = pvt->imc;
	struct dimm_info *dimm;
	int i, j;
	u32 mtr, amap;
	int ndimms;

	for (i = 0; i < NUM_CHANNELS; i++) {
		ndimms = 0;
		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
		for (j = 0; j < NUM_DIMMS; j++) {
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
					     mci->n_layers, i, j, 0);
			pci_read_config_dword(imc->chan[i].cdev,
					0x80 + 4*j, &mtr);
			ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
		}
		if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
			return -ENODEV;
		}
	}

	return 0;
}

static void skx_unregister_mci(struct skx_imc *imc)
{
	struct mem_ctl_info *mci = imc->mci;

	if (!mci)
		return;

	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->pdev);

	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
}

static int skx_register_mci(struct skx_imc *imc)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[2];
	struct pci_dev *pdev = imc->chan[0].cdev;
	struct skx_pvt *pvt;
	int rc;

	/* allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = NUM_DIMMS;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
			    sizeof(struct skx_pvt));

	if (unlikely(!mci))
		return -ENOMEM;

	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);

	/* Associate skx_dev and mci for future usage */
	imc->mci = mci;
	pvt = mci->pvt_info;
	pvt->imc = imc;

	mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", imc->node_id, imc->lmc);
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

	mci->mtype_cap = MEM_FLAG_DDR4;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = EDAC_MOD_STR;
	mci->dev_name = pci_name(imc->chan[0].cdev);
	mci->ctl_page_to_phys = NULL;

	rc = skx_get_dimm_config(mci);
	if (rc < 0)
		goto fail;

	/* record ptr to the generic device */
	mci->pdev = &pdev->dev;

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		rc = -EINVAL;
		goto fail;
	}

	return 0;

fail:
	kfree(mci->ctl_name);
fail0:
	edac_mc_free(mci);
	imc->mci = NULL;
	return rc;
}

#define	SKX_MAX_SAD 24

#define SKX_GET_SAD(d, i, reg)	\
	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
#define SKX_GET_ILV(d, i, reg)	\
	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)

#define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
#define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
#define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
#define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
#define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
#define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
#define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)

#define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
#define SKX_ILV_TARGET(tgt)	((tgt) & 7)

static bool skx_sad_decode(struct decoded_addr *res)
{
	struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
	u64 addr = res->addr;
	int i, idx, tgt, lchan, shift;
	u32 sad, ilv;
	u64 limit, prev_limit;
	int remote = 0;

	/* Simple sanity check for I/O space or out of range */
	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
		edac_dbg(0, "Address %llx out of range\n", addr);
		return false;
	}

restart:
	prev_limit = 0;
	for (i = 0; i < SKX_MAX_SAD; i++) {
		SKX_GET_SAD(d, i, sad);
		limit = SKX_SAD_LIMIT(sad);
		if (SKX_SAD_ENABLE(sad)) {
			if (addr >= prev_limit && addr <= limit)
				goto sad_found;
		}
		prev_limit = limit + 1;
	}
	edac_dbg(0, "No SAD entry for %llx\n", addr);
	return false;

sad_found:
	SKX_GET_ILV(d, i, ilv);

	switch (SKX_SAD_INTERLEAVE(sad)) {
	case 0:
		idx = GET_BITFIELD(addr, 6, 8);
		break;
	case 1:
		idx = GET_BITFIELD(addr, 8, 10);
		break;
	case 2:
		idx = GET_BITFIELD(addr, 12, 14);
		break;
	case 3:
		idx = GET_BITFIELD(addr, 30, 32);
		break;
	}

	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);

	/* If point to another node, find it and start over */
	if (SKX_ILV_REMOTE(tgt)) {
		if (remote) {
			edac_dbg(0, "Double remote!\n");
			return false;
		}
		remote = 1;
		list_for_each_entry(d, &skx_edac_list, list) {
			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
				goto restart;
		}
		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
		return false;
	}

	if (SKX_SAD_MOD3(sad) == 0)
		lchan = SKX_ILV_TARGET(tgt);
	else {
		switch (SKX_SAD_MOD3MODE(sad)) {
		case 0:
			shift = 6;
			break;
		case 1:
			shift = 8;
			break;
		case 2:
			shift = 12;
			break;
		default:
			edac_dbg(0, "illegal mod3mode\n");
			return false;
		}
		switch (SKX_SAD_MOD3ASMOD2(sad)) {
		case 0:
			lchan = (addr >> shift) % 3;
			break;
		case 1:
			lchan = (addr >> shift) % 2;
			break;
		case 2:
			lchan = (addr >> shift) % 2;
			lchan = (lchan << 1) | ~lchan;
			break;
		case 3:
			lchan = ((addr >> shift) % 2) << 1;
			break;
		}
		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
	}

	res->dev = d;
	res->socket = d->imc[0].src_id;
	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);

	edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
		 res->addr, res->socket, res->imc, res->channel);
	return true;
}

#define	SKX_MAX_TAD 8

#define SKX_GET_TADBASE(d, mc, i, reg)			\
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
#define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)

#define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
#define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
#define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
#define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
#define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
#define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
#define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)

/* which bit used for both socket and channel interleave */
static int skx_granularity[] = { 6, 8, 12, 30 };

static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
{
	addr >>= shift;
	addr /= ways;
	addr <<= shift;

	return addr | (lowbits & ((1ull << shift) - 1));
}

static bool skx_tad_decode(struct decoded_addr *res)
{
	int i;
	u32 base, wayness, chnilvoffset;
	int skt_interleave_bit, chn_interleave_bit;
	u64 channel_addr;

	for (i = 0; i < SKX_MAX_TAD; i++) {
		SKX_GET_TADBASE(res->dev, res->imc, i, base);
		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
			goto tad_found;
	}
	edac_dbg(0, "No TAD entry for %llx\n", res->addr);
	return false;

tad_found:
	res->sktways = SKX_TAD_SKTWAYS(wayness);
	res->chanways = SKX_TAD_CHNWAYS(wayness);
	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];

	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);

	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
		/* Must handle channel first, then socket */
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
						 res->chanways, channel_addr);
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
						 res->sktways, channel_addr);
	} else {
		/* Handle socket then channel. Preserve low bits from original address */
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
						 res->sktways, res->addr);
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
						 res->chanways, res->addr);
	}

	res->chan_addr = channel_addr;

	edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
		 res->addr, res->chan_addr, res->sktways, res->chanways);
	return true;
}

#define SKX_MAX_RIR 4

#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
			      0x108 + 4 * (i), &reg)
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
			      0x120 + 16 * idx + 4 * (i), &reg)

#define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
#define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
#define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
#define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
#define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))

static bool skx_rir_decode(struct decoded_addr *res)
{
	int i, idx, chan_rank;
	int shift;
	u32 rirway, rirlv;
	u64 rank_addr, prev_limit = 0, limit;

	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
		shift = 6;
	else
		shift = 13;

	for (i = 0; i < SKX_MAX_RIR; i++) {
		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
		limit = SKX_RIR_LIMIT(rirway);
		if (SKX_RIR_VALID(rirway)) {
			if (prev_limit <= res->chan_addr &&
			    res->chan_addr <= limit)
				goto rir_found;
		}
		prev_limit = limit;
	}
	edac_dbg(0, "No RIR entry for %llx\n", res->addr);
	return false;

rir_found:
	rank_addr = res->chan_addr >> shift;
	rank_addr /= SKX_RIR_WAYS(rirway);
	rank_addr <<= shift;
	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);

	res->rank_address = rank_addr;
	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);

	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
	res->channel_rank = chan_rank;
	res->dimm = chan_rank / 4;
	res->rank = chan_rank % 4;

	edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
		 res->addr, res->dimm, res->rank,
		 res->channel_rank, res->rank_address);
	return true;
}

static u8 skx_close_row[] = {
	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
};
static u8 skx_close_column[] = {
	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
};
static u8 skx_open_row[] = {
	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
};
static u8 skx_open_column[] = {
	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};
static u8 skx_open_fine_column[] = {
	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
};

static int skx_bits(u64 addr, int nbits, u8 *bits)
{
	int i, res = 0;

	for (i = 0; i < nbits; i++)
		res |= ((addr >> bits[i]) & 1) << i;
	return res;
}

static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
{
	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);

	if (do_xor)
		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);

	return ret;
}

static bool skx_mad_decode(struct decoded_addr *r)
{
	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
	int bg0 = dimm->fine_grain_bank ? 6 : 13;

	if (dimm->close_pg) {
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
		r->column |= 0x400; /* C10 is autoprecharge, always set */
		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
	} else {
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
		if (dimm->fine_grain_bank)
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
		else
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
	}
	r->row &= (1u << dimm->rowbits) - 1;

	edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
		 r->addr, r->row, r->column, r->bank_address,
		 r->bank_group);
	return true;
}

static bool skx_decode(struct decoded_addr *res)
{

	return skx_sad_decode(res) && skx_tad_decode(res) &&
		skx_rir_decode(res) && skx_mad_decode(res);
}

#ifdef CONFIG_EDAC_DEBUG
/*
 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
 * Write an address to this file to exercise the address decode
 * logic in this driver.
 */
static struct dentry *skx_test;
static u64 skx_fake_addr;

static int debugfs_u64_set(void *data, u64 val)
{
	struct decoded_addr res;

	res.addr = val;
	skx_decode(&res);

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");

static struct dentry *mydebugfs_create(const char *name, umode_t mode,
				       struct dentry *parent, u64 *value)
{
	return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
}

static void setup_skx_debug(void)
{
	skx_test = debugfs_create_dir("skx_edac_test", NULL);
	mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
}

static void teardown_skx_debug(void)
{
	debugfs_remove_recursive(skx_test);
}
#else
static void setup_skx_debug(void)
{
}

static void teardown_skx_debug(void)
{
}
#endif /*CONFIG_EDAC_DEBUG*/

static void skx_mce_output_error(struct mem_ctl_info *mci,
				 const struct mce *m,
				 struct decoded_addr *res)
{
	enum hw_event_mc_err_type tp_event;
	char *type, *optype, msg[256];
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
	bool recoverable;
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);

	recoverable = GET_BITFIELD(m->status, 56, 56);

	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}

	/*
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (!((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
			optype = "generic undef request error";
			break;
		case 1:
			optype = "memory read error";
			break;
		case 2:
			optype = "memory write error";
			break;
		case 3:
			optype = "addr/cmd error";
			break;
		case 4:
			optype = "memory scrubbing error";
			break;
		default:
			optype = "reserved";
			break;
		}
	}

	snprintf(msg, sizeof(msg),
		 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 mscod, errcode,
		 res->socket, res->imc, res->rank,
		 res->bank_group, res->bank_address, res->row, res->column);

	edac_dbg(0, "%s\n", msg);

	/* Call the helper to output message */
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     res->channel, res->dimm, -1,
			     optype, msg);
}

static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
			       void *data)
{
	struct mce *mce = (struct mce *)data;
	struct decoded_addr res;
	struct mem_ctl_info *mci;
	char *type;

	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

	/* ignore unless this is memory related with an address */
	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
		return NOTIFY_DONE;

	res.addr = mce->addr;
	if (!skx_decode(&res))
		return NOTIFY_DONE;
	mci = res.dev->imc[res.imc].mci;

	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");

	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);

	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);

	skx_mce_output_error(mci, mce, &res);

	return NOTIFY_DONE;
}

static struct notifier_block skx_mce_dec = {
	.notifier_call	= skx_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
};

static void skx_remove(void)
{
	int i, j;
	struct skx_dev *d, *tmp;

	edac_dbg(0, "\n");

	list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
		list_del(&d->list);
		for (i = 0; i < NUM_IMC; i++) {
			skx_unregister_mci(&d->imc[i]);
			for (j = 0; j < NUM_CHANNELS; j++)
				pci_dev_put(d->imc[i].chan[j].cdev);
		}
		pci_dev_put(d->util_all);
		pci_dev_put(d->sad_all);

		kfree(d);
	}
}

/*
 * skx_init:
 *	make sure we are running on the correct cpu model
 *	search for all the devices we need
 *	check which DIMMs are present.
 */
static int __init skx_init(void)
{
	const struct x86_cpu_id *id;
	const struct munit *m;
	const char *owner;
	int rc = 0, i;
	u8 mc = 0, src_id, node_id;
	struct skx_dev *d;

	edac_dbg(2, "\n");

	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

	id = x86_match_cpu(skx_cpuids);
	if (!id)
		return -ENODEV;

	rc = skx_get_hi_lo();
	if (rc)
		return rc;

	rc = get_all_bus_mappings();
	if (rc < 0)
		goto fail;
	if (rc == 0) {
		edac_dbg(2, "No memory controllers found\n");
		return -ENODEV;
	}

	for (m = skx_all_munits; m->did; m++) {
		rc = get_all_munits(m);
		if (rc < 0)
			goto fail;
		if (rc != m->per_socket * skx_num_sockets) {
			edac_dbg(2, "Expected %d, got %d of %x\n",
				 m->per_socket * skx_num_sockets, rc, m->did);
			rc = -ENODEV;
			goto fail;
		}
	}

	list_for_each_entry(d, &skx_edac_list, list) {
		src_id = get_src_id(d);
		node_id = skx_get_node_id(d);
		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
		for (i = 0; i < NUM_IMC; i++) {
			d->imc[i].mc = mc++;
			d->imc[i].lmc = i;
			d->imc[i].src_id = src_id;
			d->imc[i].node_id = node_id;
			rc = skx_register_mci(&d->imc[i]);
			if (rc < 0)
				goto fail;
		}
	}

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	setup_skx_debug();

	mce_register_decode_chain(&skx_mce_dec);

	return 0;
fail:
	skx_remove();
	return rc;
}

static void __exit skx_exit(void)
{
	edac_dbg(2, "\n");
	mce_unregister_decode_chain(&skx_mce_dec);
	skx_remove();
	teardown_skx_debug();
}

module_init(skx_init);
module_exit(skx_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");