summaryrefslogtreecommitdiff
path: root/drivers/crypto/nx/nx-aes-xcbc.c
blob: ad3358e74f5c442df14c75c76f8ec6b6e9fb0158 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/**
 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
 *
 * Copyright (C) 2011-2012 International Business Machines Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 only.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Author: Kent Yoder <yoder1@us.ibm.com>
 */

#include <crypto/internal/hash.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <asm/vio.h>

#include "nx_csbcpb.h"
#include "nx.h"


struct xcbc_state {
	u8 state[AES_BLOCK_SIZE];
	unsigned int count;
	u8 buffer[AES_BLOCK_SIZE];
};

static int nx_xcbc_set_key(struct crypto_shash *desc,
			   const u8            *in_key,
			   unsigned int         key_len)
{
	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;

	switch (key_len) {
	case AES_KEYSIZE_128:
		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
		break;
	default:
		return -EINVAL;
	}

	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);

	return 0;
}

/*
 * Based on RFC 3566, for a zero-length message:
 *
 * n = 1
 * K1 = E(K, 0x01010101010101010101010101010101)
 * K3 = E(K, 0x03030303030303030303030303030303)
 * E[0] = 0x00000000000000000000000000000000
 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
 * E[1] = (K1, M[1] ^ E[0] ^ K3)
 * Tag = M[1]
 */
static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
{
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *in_sg, *out_sg;
	u8 keys[2][AES_BLOCK_SIZE];
	u8 key[32];
	int rc = 0;
	int len;

	/* Change to ECB mode */
	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;

	/* K1 and K3 base patterns */
	memset(keys[0], 0x01, sizeof(keys[0]));
	memset(keys[1], 0x03, sizeof(keys[1]));

	len = sizeof(keys);
	/* Generate K1 and K3 encrypting the patterns */
	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
				 nx_ctx->ap->sglen);

	if (len != sizeof(keys))
		return -EINVAL;

	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
				  nx_ctx->ap->sglen);

	if (len != sizeof(keys))
		return -EINVAL;

	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
	if (rc)
		goto out;
	atomic_inc(&(nx_ctx->stats->aes_ops));

	/* XOr K3 with the padding for a 0 length message */
	keys[1][0] ^= 0x80;

	len = sizeof(keys[1]);

	/* Encrypt the final result */
	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
				 nx_ctx->ap->sglen);

	if (len != sizeof(keys[1]))
		return -EINVAL;

	len = AES_BLOCK_SIZE;
	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
				  nx_ctx->ap->sglen);

	if (len != AES_BLOCK_SIZE)
		return -EINVAL;

	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
	if (rc)
		goto out;
	atomic_inc(&(nx_ctx->stats->aes_ops));

out:
	/* Restore XCBC mode */
	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;

	return rc;
}

static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
{
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	int err;

	err = nx_crypto_ctx_aes_xcbc_init(tfm);
	if (err)
		return err;

	nx_ctx_init(nx_ctx, HCOP_FC_AES);

	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;

	return 0;
}

static int nx_xcbc_init(struct shash_desc *desc)
{
	struct xcbc_state *sctx = shash_desc_ctx(desc);

	memset(sctx, 0, sizeof *sctx);

	return 0;
}

static int nx_xcbc_update(struct shash_desc *desc,
			  const u8          *data,
			  unsigned int       len)
{
	struct xcbc_state *sctx = shash_desc_ctx(desc);
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *in_sg;
	struct nx_sg *out_sg;
	u32 to_process = 0, leftover, total;
	unsigned int max_sg_len;
	unsigned long irq_flags;
	int rc = 0;
	int data_len;

	spin_lock_irqsave(&nx_ctx->lock, irq_flags);


	total = sctx->count + len;

	/* 2 cases for total data len:
	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
	 */
	if (total <= AES_BLOCK_SIZE) {
		memcpy(sctx->buffer + sctx->count, data, len);
		sctx->count += len;
		goto out;
	}

	in_sg = nx_ctx->in_sg;
	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
				nx_ctx->ap->sglen);
	max_sg_len = min_t(u64, max_sg_len,
				nx_ctx->ap->databytelen/NX_PAGE_SIZE);

	data_len = AES_BLOCK_SIZE;
	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
				  &len, nx_ctx->ap->sglen);

	if (data_len != AES_BLOCK_SIZE) {
		rc = -EINVAL;
		goto out;
	}

	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	do {
		to_process = total - to_process;
		to_process = to_process & ~(AES_BLOCK_SIZE - 1);

		leftover = total - to_process;

		/* the hardware will not accept a 0 byte operation for this
		 * algorithm and the operation MUST be finalized to be correct.
		 * So if we happen to get an update that falls on a block sized
		 * boundary, we must save off the last block to finalize with
		 * later. */
		if (!leftover) {
			to_process -= AES_BLOCK_SIZE;
			leftover = AES_BLOCK_SIZE;
		}

		if (sctx->count) {
			data_len = sctx->count;
			in_sg = nx_build_sg_list(nx_ctx->in_sg,
						(u8 *) sctx->buffer,
						&data_len,
						max_sg_len);
			if (data_len != sctx->count) {
				rc = -EINVAL;
				goto out;
			}
		}

		data_len = to_process - sctx->count;
		in_sg = nx_build_sg_list(in_sg,
					(u8 *) data,
					&data_len,
					max_sg_len);

		if (data_len != to_process - sctx->count) {
			rc = -EINVAL;
			goto out;
		}

		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
					sizeof(struct nx_sg);

		/* we've hit the nx chip previously and we're updating again,
		 * so copy over the partial digest */
		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
			memcpy(csbcpb->cpb.aes_xcbc.cv,
				csbcpb->cpb.aes_xcbc.out_cv_mac,
				AES_BLOCK_SIZE);
		}

		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
			rc = -EINVAL;
			goto out;
		}

		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
		if (rc)
			goto out;

		atomic_inc(&(nx_ctx->stats->aes_ops));

		/* everything after the first update is continuation */
		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;

		total -= to_process;
		data += to_process - sctx->count;
		sctx->count = 0;
		in_sg = nx_ctx->in_sg;
	} while (leftover > AES_BLOCK_SIZE);

	/* copy the leftover back into the state struct */
	memcpy(sctx->buffer, data, leftover);
	sctx->count = leftover;

out:
	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
	return rc;
}

static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
{
	struct xcbc_state *sctx = shash_desc_ctx(desc);
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *in_sg, *out_sg;
	unsigned long irq_flags;
	int rc = 0;
	int len;

	spin_lock_irqsave(&nx_ctx->lock, irq_flags);

	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
		/* we've hit the nx chip previously, now we're finalizing,
		 * so copy over the partial digest */
		memcpy(csbcpb->cpb.aes_xcbc.cv,
		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
	} else if (sctx->count == 0) {
		/*
		 * we've never seen an update, so this is a 0 byte op. The
		 * hardware cannot handle a 0 byte op, so just ECB to
		 * generate the hash.
		 */
		rc = nx_xcbc_empty(desc, out);
		goto out;
	}

	/* final is represented by continuing the operation and indicating that
	 * this is not an intermediate operation */
	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;

	len = sctx->count;
	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
				 &len, nx_ctx->ap->sglen);

	if (len != sctx->count) {
		rc = -EINVAL;
		goto out;
	}

	len = AES_BLOCK_SIZE;
	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
				  nx_ctx->ap->sglen);

	if (len != AES_BLOCK_SIZE) {
		rc = -EINVAL;
		goto out;
	}

	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	if (!nx_ctx->op.outlen) {
		rc = -EINVAL;
		goto out;
	}

	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
	if (rc)
		goto out;

	atomic_inc(&(nx_ctx->stats->aes_ops));

	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
out:
	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
	return rc;
}

struct shash_alg nx_shash_aes_xcbc_alg = {
	.digestsize = AES_BLOCK_SIZE,
	.init       = nx_xcbc_init,
	.update     = nx_xcbc_update,
	.final      = nx_xcbc_final,
	.setkey     = nx_xcbc_set_key,
	.descsize   = sizeof(struct xcbc_state),
	.statesize  = sizeof(struct xcbc_state),
	.base       = {
		.cra_name        = "xcbc(aes)",
		.cra_driver_name = "xcbc-aes-nx",
		.cra_priority    = 300,
		.cra_blocksize   = AES_BLOCK_SIZE,
		.cra_module      = THIS_MODULE,
		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
		.cra_init        = nx_crypto_ctx_aes_xcbc_init2,
		.cra_exit        = nx_crypto_ctx_exit,
	}
};