summaryrefslogtreecommitdiff
path: root/drivers/crypto/hisilicon/sec2/sec_crypto.c
blob: 0a5391fff485c43447498f837fb05f4f6803f4a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
#define SEC_CTX_DEV(ctx)	(&(ctx)->sec->qm.pdev->dev)

static DEFINE_MUTEX(sec_algs_lock);
static unsigned int sec_active_devs;

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
static inline int sec_get_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

static inline void sec_put_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
	if (req_id < 0) {
		dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

	if (req_id < 0 || req_id >= QM_Q_DEPTH) {
		dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
	struct sec_sqe *bd = resp;
	u16 done, flag;
	u8 type;
	struct sec_req *req;

	type = bd->type_cipher_auth & SEC_TYPE_MASK;
	if (type == SEC_BD_TYPE2) {
		req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
		req->err_type = bd->type2.error_type;

		done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
		flag = (le16_to_cpu(bd->type2.done_flag) &
				   SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
		if (req->err_type || done != 0x1 || flag != 0x2)
			dev_err(SEC_CTX_DEV(req->ctx),
				"err_type[%d],done[%d],flag[%d]\n",
				req->err_type, done, flag);
	} else {
		pr_err("err bd type [%d]\n", type);
		return;
	}

	atomic64_inc(&req->ctx->sec->debug.dfx.recv_cnt);

	req->ctx->req_op->buf_unmap(req->ctx, req);

	req->ctx->req_op->callback(req->ctx, req);
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
	mutex_unlock(&qp_ctx->req_lock);
	atomic64_inc(&ctx->sec->debug.dfx.send_cnt);

	if (ret == -EBUSY)
		return -ENOBUFS;

	if (!ret) {
		if (atomic_read(&req->fake_busy))
			ret = -EBUSY;
		else
			ret = -EINPROGRESS;
	}

	return ret;
}

static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp = hisi_qm_create_qp(qm, alg_type);
	if (IS_ERR(qp))
		return PTR_ERR(qp);

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp->req_cb = sec_req_cb;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

	mutex_init(&qp_ctx->req_lock);
	atomic_set(&qp_ctx->pending_reqs, 0);
	idr_init(&qp_ctx->req_idr);

	qp_ctx->req_list = kcalloc(QM_Q_DEPTH, sizeof(void *), GFP_ATOMIC);
	if (!qp_ctx->req_list)
		goto err_destroy_idr;

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
	if (IS_ERR(qp_ctx->c_in_pool)) {
		dev_err(dev, "fail to create sgl pool for input!\n");
		goto err_free_req_list;
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
	if (IS_ERR(qp_ctx->c_out_pool)) {
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

	ret = ctx->req_op->resource_alloc(ctx, qp_ctx);
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
	ctx->req_op->resource_free(ctx, qp_ctx);
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_free_req_list:
	kfree(qp_ctx->req_list);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	hisi_qm_release_qp(qp);

	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	hisi_qm_stop_qp(qp_ctx->qp);
	ctx->req_op->resource_free(ctx, qp_ctx);

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
	kfree(qp_ctx->req_list);
	hisi_qm_release_qp(qp_ctx->qp);
}

static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx;
	struct sec_dev *sec;
	struct device *dev;
	struct hisi_qm *qm;
	int i, ret;

	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));

	sec = sec_find_device(cpu_to_node(smp_processor_id()));
	if (!sec) {
		pr_err("find no Hisilicon SEC device!\n");
		return -ENODEV;
	}
	ctx->sec = sec;
	qm = &sec->qm;
	dev = &qm->pdev->dev;
	ctx->hlf_q_num = sec->ctx_q_num >> 0x1;

	/* Half of queue depth is taken as fake requests limit in the queue. */
	ctx->fake_req_limit = QM_Q_DEPTH >> 0x1;
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
	if (!ctx->qp_ctx)
		return -ENOMEM;

	for (i = 0; i < sec->ctx_q_num; i++) {
		ret = sec_create_qp_ctx(qm, ctx, i, 0);
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	c_ctx = &ctx->c_ctx;
	c_ctx->ivsize = crypto_skcipher_ivsize(tfm);
	if (c_ctx->ivsize > SEC_IV_SIZE) {
		dev_err(dev, "get error iv size!\n");
		ret = -EINVAL;
		goto err_sec_release_qp_ctx;
	}
	c_ctx->c_key = dma_alloc_coherent(dev, SEC_MAX_KEY_SIZE,
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key) {
		ret = -ENOMEM;
		goto err_sec_release_qp_ctx;
	}

	return 0;

err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
	return ret;
}

static void sec_skcipher_exit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int i = 0;

	if (c_ctx->c_key) {
		dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
				  c_ctx->c_key, c_ctx->c_key_dma);
		c_ctx->c_key = NULL;
	}

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
}

static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
		switch (keylen) {
		case AES_KEYSIZE_128:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case AES_KEYSIZE_192:
			c_ctx->c_key_len = SEC_CKEY_192BIT;
			break;
		case AES_KEYSIZE_256:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: aes key error!\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
			dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);

	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)

GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)

GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)

static int sec_skcipher_get_res(struct sec_ctx *ctx,
				struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	struct sec_cipher_res *c_res = qp_ctx->alg_meta_data;
	struct sec_cipher_req *c_req = &req->c_req;
	int req_id = req->req_id;

	c_req->c_ivin = c_res[req_id].c_ivin;
	c_req->c_ivin_dma = c_res[req_id].c_ivin_dma;

	return 0;
}

static int sec_skcipher_resource_alloc(struct sec_ctx *ctx,
				       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_res *res;
	int i;

	res = kcalloc(QM_Q_DEPTH, sizeof(struct sec_cipher_res), GFP_KERNEL);
	if (!res)
		return -ENOMEM;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					   &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin) {
		kfree(res);
		return -ENOMEM;
	}

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}
	qp_ctx->alg_meta_data = res;

	return 0;
}

static void sec_skcipher_resource_free(struct sec_ctx *ctx,
				      struct sec_qp_ctx *qp_ctx)
{
	struct sec_cipher_res *res = qp_ctx->alg_meta_data;
	struct device *dev = SEC_CTX_DEV(ctx);

	if (!res)
		return;

	dma_free_coherent(dev, SEC_TOTAL_IV_SZ, res->c_ivin, res->c_ivin_dma);
	kfree(res);
}

static int sec_skcipher_map(struct device *dev, struct sec_req *req,
			    struct scatterlist *src, struct scatterlist *dst)
{
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_req *c_req = &req->c_req;

	return sec_skcipher_map(SEC_CTX_DEV(ctx), req,
				c_req->sk_req->src, c_req->sk_req->dst);
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_req *c_req = &req->c_req;
	struct skcipher_request *sk_req = c_req->sk_req;

	if (sk_req->dst != sk_req->src)
		hisi_acc_sg_buf_unmap(dev, sk_req->src, c_req->c_in);

	hisi_acc_sg_buf_unmap(dev, sk_req->dst, c_req->c_out);
}

static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
	if (ret)
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
	if (ret)
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);

	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_cipher_req *c_req = &req->c_req;

	c_req->c_len = sk_req->cryptlen;
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 de = 0;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

	sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	/* Just set DST address type */
	da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	sec_sqe->sdm_addr_type |= da_type;

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

static void sec_update_iv(struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
	size_t sz;

	if (req->c_req.encrypt)
		sgl = sk_req->dst;
	else
		sgl = sk_req->src;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), sk_req->iv,
				iv_size, sk_req->cryptlen - iv_size);
	if (sz != iv_size)
		dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}

static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);

	/* IV output at encrypto of CBC mode */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
		sec_update_iv(req);

	if (atomic_cmpxchg(&req->fake_busy, 1, 0) != 1)
		sk_req->base.complete(&sk_req->base, -EINPROGRESS);

	sk_req->base.complete(&sk_req->base, req->err_type);
}

static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);
	sec_put_queue_id(ctx, req);
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
	int issue_id, ret;

	/* To load balance */
	issue_id = sec_get_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[issue_id];

	req->req_id = sec_alloc_req_id(req, qp_ctx);
	if (req->req_id < 0) {
		sec_put_queue_id(ctx, req);
		return req->req_id;
	}

	if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
		atomic_set(&req->fake_busy, 1);
	else
		atomic_set(&req->fake_busy, 0);

	ret = ctx->req_op->get_res(ctx, req);
	if (ret) {
		atomic_dec(&qp_ctx->pending_reqs);
		sec_request_uninit(ctx, req);
		dev_err(SEC_CTX_DEV(ctx), "get resources failed!\n");
	}

	return ret;
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = sec_request_init(ctx, req);
	if (ret)
		return ret;

	ret = sec_request_transfer(ctx, req);
	if (ret)
		goto err_uninit_req;

	/* Output IV as decrypto */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
		sec_update_iv(req);

	ret = ctx->req_op->bd_send(ctx, req);
	if (ret != -EBUSY && ret != -EINPROGRESS) {
		dev_err(SEC_CTX_DEV(ctx), "send sec request failed!\n");
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
		memcpy(req->c_req.sk_req->iv, req->c_req.c_ivin,
		       ctx->c_ctx.ivsize);

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);

	return ret;
}

static struct sec_req_op sec_req_ops_tbl = {
	.get_res	= sec_skcipher_get_res,
	.resource_alloc	= sec_skcipher_resource_alloc,
	.resource_free	= sec_skcipher_resource_free,
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

	ctx->req_op = &sec_req_ops_tbl;

	return sec_skcipher_init(tfm);
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
	sec_skcipher_exit(tfm);
}

static int sec_skcipher_param_check(struct sec_ctx *ctx,
				    struct skcipher_request *sk_req)
{
	u8 c_alg = ctx->c_ctx.c_alg;
	struct device *dev = SEC_CTX_DEV(ctx);

	if (!sk_req->src || !sk_req->dst) {
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}

	if (c_alg == SEC_CALG_3DES) {
		if (sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1)) {
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
		if (sk_req->cryptlen & (AES_BLOCK_SIZE - 1)) {
			dev_err(dev, "skcipher aes input length error!\n");
			return -EINVAL;
		}
		return 0;
	}

	dev_err(dev, "skcipher algorithm error!\n");
	return -EINVAL;
}

static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	if (!sk_req->cryptlen)
		return 0;

	ret = sec_skcipher_param_check(ctx, sk_req);
	if (ret)
		return ret;

	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
		.cra_flags = CRYPTO_ALG_ASYNC,\
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

static struct skcipher_alg sec_algs[] = {
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

int sec_register_to_crypto(void)
{
	int ret = 0;

	/* To avoid repeat register */
	mutex_lock(&sec_algs_lock);
	if (++sec_active_devs == 1)
		ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
	mutex_unlock(&sec_algs_lock);

	return ret;
}

void sec_unregister_from_crypto(void)
{
	mutex_lock(&sec_algs_lock);
	if (--sec_active_devs == 0)
		crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
	mutex_unlock(&sec_algs_lock);
}