summaryrefslogtreecommitdiff
path: root/drivers/crypto/ccp/ccp-crypto-rsa.c
blob: 649c91d604015f6c83a90c5530b40d85281b6a6b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// SPDX-License-Identifier: GPL-2.0-only
/*
 * AMD Cryptographic Coprocessor (CCP) RSA crypto API support
 *
 * Copyright (C) 2017 Advanced Micro Devices, Inc.
 *
 * Author: Gary R Hook <gary.hook@amd.com>
 */

#include <linux/module.h>
#include <linux/sched.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/internal/rsa.h>
#include <crypto/internal/akcipher.h>
#include <crypto/akcipher.h>
#include <crypto/scatterwalk.h>

#include "ccp-crypto.h"

static inline struct akcipher_request *akcipher_request_cast(
	struct crypto_async_request *req)
{
	return container_of(req, struct akcipher_request, base);
}

static inline int ccp_copy_and_save_keypart(u8 **kpbuf, unsigned int *kplen,
					    const u8 *buf, size_t sz)
{
	int nskip;

	for (nskip = 0; nskip < sz; nskip++)
		if (buf[nskip])
			break;
	*kplen = sz - nskip;
	*kpbuf = kmemdup(buf + nskip, *kplen, GFP_KERNEL);
	if (!*kpbuf)
		return -ENOMEM;

	return 0;
}

static int ccp_rsa_complete(struct crypto_async_request *async_req, int ret)
{
	struct akcipher_request *req = akcipher_request_cast(async_req);
	struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx(req);

	if (ret)
		return ret;

	req->dst_len = rctx->cmd.u.rsa.key_size >> 3;

	return 0;
}

static unsigned int ccp_rsa_maxsize(struct crypto_akcipher *tfm)
{
	struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);

	return ctx->u.rsa.n_len;
}

static int ccp_rsa_crypt(struct akcipher_request *req, bool encrypt)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx(req);
	int ret = 0;

	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
	INIT_LIST_HEAD(&rctx->cmd.entry);
	rctx->cmd.engine = CCP_ENGINE_RSA;

	rctx->cmd.u.rsa.key_size = ctx->u.rsa.key_len; /* in bits */
	if (encrypt) {
		rctx->cmd.u.rsa.exp = &ctx->u.rsa.e_sg;
		rctx->cmd.u.rsa.exp_len = ctx->u.rsa.e_len;
	} else {
		rctx->cmd.u.rsa.exp = &ctx->u.rsa.d_sg;
		rctx->cmd.u.rsa.exp_len = ctx->u.rsa.d_len;
	}
	rctx->cmd.u.rsa.mod = &ctx->u.rsa.n_sg;
	rctx->cmd.u.rsa.mod_len = ctx->u.rsa.n_len;
	rctx->cmd.u.rsa.src = req->src;
	rctx->cmd.u.rsa.src_len = req->src_len;
	rctx->cmd.u.rsa.dst = req->dst;

	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);

	return ret;
}

static int ccp_rsa_encrypt(struct akcipher_request *req)
{
	return ccp_rsa_crypt(req, true);
}

static int ccp_rsa_decrypt(struct akcipher_request *req)
{
	return ccp_rsa_crypt(req, false);
}

static int ccp_check_key_length(unsigned int len)
{
	/* In bits */
	if (len < 8 || len > 4096)
		return -EINVAL;
	return 0;
}

static void ccp_rsa_free_key_bufs(struct ccp_ctx *ctx)
{
	/* Clean up old key data */
	kzfree(ctx->u.rsa.e_buf);
	ctx->u.rsa.e_buf = NULL;
	ctx->u.rsa.e_len = 0;
	kzfree(ctx->u.rsa.n_buf);
	ctx->u.rsa.n_buf = NULL;
	ctx->u.rsa.n_len = 0;
	kzfree(ctx->u.rsa.d_buf);
	ctx->u.rsa.d_buf = NULL;
	ctx->u.rsa.d_len = 0;
}

static int ccp_rsa_setkey(struct crypto_akcipher *tfm, const void *key,
			  unsigned int keylen, bool private)
{
	struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct rsa_key raw_key;
	int ret;

	ccp_rsa_free_key_bufs(ctx);
	memset(&raw_key, 0, sizeof(raw_key));

	/* Code borrowed from crypto/rsa.c */
	if (private)
		ret = rsa_parse_priv_key(&raw_key, key, keylen);
	else
		ret = rsa_parse_pub_key(&raw_key, key, keylen);
	if (ret)
		goto n_key;

	ret = ccp_copy_and_save_keypart(&ctx->u.rsa.n_buf, &ctx->u.rsa.n_len,
					raw_key.n, raw_key.n_sz);
	if (ret)
		goto key_err;
	sg_init_one(&ctx->u.rsa.n_sg, ctx->u.rsa.n_buf, ctx->u.rsa.n_len);

	ctx->u.rsa.key_len = ctx->u.rsa.n_len << 3; /* convert to bits */
	if (ccp_check_key_length(ctx->u.rsa.key_len)) {
		ret = -EINVAL;
		goto key_err;
	}

	ret = ccp_copy_and_save_keypart(&ctx->u.rsa.e_buf, &ctx->u.rsa.e_len,
					raw_key.e, raw_key.e_sz);
	if (ret)
		goto key_err;
	sg_init_one(&ctx->u.rsa.e_sg, ctx->u.rsa.e_buf, ctx->u.rsa.e_len);

	if (private) {
		ret = ccp_copy_and_save_keypart(&ctx->u.rsa.d_buf,
						&ctx->u.rsa.d_len,
						raw_key.d, raw_key.d_sz);
		if (ret)
			goto key_err;
		sg_init_one(&ctx->u.rsa.d_sg,
			    ctx->u.rsa.d_buf, ctx->u.rsa.d_len);
	}

	return 0;

key_err:
	ccp_rsa_free_key_bufs(ctx);

n_key:
	return ret;
}

static int ccp_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
			      unsigned int keylen)
{
	return ccp_rsa_setkey(tfm, key, keylen, true);
}

static int ccp_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
			     unsigned int keylen)
{
	return ccp_rsa_setkey(tfm, key, keylen, false);
}

static int ccp_rsa_init_tfm(struct crypto_akcipher *tfm)
{
	struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);

	akcipher_set_reqsize(tfm, sizeof(struct ccp_rsa_req_ctx));
	ctx->complete = ccp_rsa_complete;

	return 0;
}

static void ccp_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
	struct ccp_ctx *ctx = crypto_tfm_ctx(&tfm->base);

	ccp_rsa_free_key_bufs(ctx);
}

static struct akcipher_alg ccp_rsa_defaults = {
	.encrypt = ccp_rsa_encrypt,
	.decrypt = ccp_rsa_decrypt,
	.set_pub_key = ccp_rsa_setpubkey,
	.set_priv_key = ccp_rsa_setprivkey,
	.max_size = ccp_rsa_maxsize,
	.init = ccp_rsa_init_tfm,
	.exit = ccp_rsa_exit_tfm,
	.base = {
		.cra_name = "rsa",
		.cra_driver_name = "rsa-ccp",
		.cra_priority = CCP_CRA_PRIORITY,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = 2 * sizeof(struct ccp_ctx),
	},
};

struct ccp_rsa_def {
	unsigned int version;
	const char *name;
	const char *driver_name;
	unsigned int reqsize;
	struct akcipher_alg *alg_defaults;
};

static struct ccp_rsa_def rsa_algs[] = {
	{
		.version	= CCP_VERSION(3, 0),
		.name		= "rsa",
		.driver_name	= "rsa-ccp",
		.reqsize	= sizeof(struct ccp_rsa_req_ctx),
		.alg_defaults	= &ccp_rsa_defaults,
	}
};

static int ccp_register_rsa_alg(struct list_head *head,
			        const struct ccp_rsa_def *def)
{
	struct ccp_crypto_akcipher_alg *ccp_alg;
	struct akcipher_alg *alg;
	int ret;

	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
	if (!ccp_alg)
		return -ENOMEM;

	INIT_LIST_HEAD(&ccp_alg->entry);

	alg = &ccp_alg->alg;
	*alg = *def->alg_defaults;
	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
		 def->driver_name);
	ret = crypto_register_akcipher(alg);
	if (ret) {
		pr_err("%s akcipher algorithm registration error (%d)\n",
		       alg->base.cra_name, ret);
		kfree(ccp_alg);
		return ret;
	}

	list_add(&ccp_alg->entry, head);

	return 0;
}

int ccp_register_rsa_algs(struct list_head *head)
{
	int i, ret;
	unsigned int ccpversion = ccp_version();

	/* Register the RSA algorithm in standard mode
	 * This works for CCP v3 and later
	 */
	for (i = 0; i < ARRAY_SIZE(rsa_algs); i++) {
		if (rsa_algs[i].version > ccpversion)
			continue;
		ret = ccp_register_rsa_alg(head, &rsa_algs[i]);
		if (ret)
			return ret;
	}

	return 0;
}