summaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cppc_cpufreq.c
blob: f29e8d0553a8243a9eef73083ace1e5bca248138 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// SPDX-License-Identifier: GPL-2.0-only
/*
 * CPPC (Collaborative Processor Performance Control) driver for
 * interfacing with the CPUfreq layer and governors. See
 * cppc_acpi.c for CPPC specific methods.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 */

#define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/dmi.h>
#include <linux/time.h>
#include <linux/vmalloc.h>

#include <asm/unaligned.h>

#include <acpi/cppc_acpi.h>

/* Minimum struct length needed for the DMI processor entry we want */
#define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48

/* Offest in the DMI processor structure for the max frequency */
#define DMI_PROCESSOR_MAX_SPEED  0x14

/*
 * These structs contain information parsed from per CPU
 * ACPI _CPC structures.
 * e.g. For each CPU the highest, lowest supported
 * performance capabilities, desired performance level
 * requested etc.
 */
static struct cppc_cpudata **all_cpu_data;
static bool boost_supported;

struct cppc_workaround_oem_info {
	char oem_id[ACPI_OEM_ID_SIZE + 1];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
	u32 oem_revision;
};

static struct cppc_workaround_oem_info wa_info[] = {
	{
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP07   ",
		.oem_revision	= 0,
	}, {
		.oem_id		= "HISI  ",
		.oem_table_id	= "HIP08   ",
		.oem_revision	= 0,
	}
};

/* Callback function used to retrieve the max frequency from DMI */
static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
{
	const u8 *dmi_data = (const u8 *)dm;
	u16 *mhz = (u16 *)private;

	if (dm->type == DMI_ENTRY_PROCESSOR &&
	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
		u16 val = (u16)get_unaligned((const u16 *)
				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
		*mhz = val > *mhz ? val : *mhz;
	}
}

/* Look up the max frequency in DMI */
static u64 cppc_get_dmi_max_khz(void)
{
	u16 mhz = 0;

	dmi_walk(cppc_find_dmi_mhz, &mhz);

	/*
	 * Real stupid fallback value, just in case there is no
	 * actual value set.
	 */
	mhz = mhz ? mhz : 1;

	return (1000 * mhz);
}

/*
 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
 * use them to convert perf to freq and vice versa
 *
 * If the perf/freq point lies between Nominal and Lowest, we can treat
 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
 * and extrapolate the rest
 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
 */
static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
					unsigned int perf)
{
	static u64 max_khz;
	struct cppc_perf_caps *caps = &cpu->perf_caps;
	u64 mul, div;

	if (caps->lowest_freq && caps->nominal_freq) {
		if (perf >= caps->nominal_perf) {
			mul = caps->nominal_freq;
			div = caps->nominal_perf;
		} else {
			mul = caps->nominal_freq - caps->lowest_freq;
			div = caps->nominal_perf - caps->lowest_perf;
		}
	} else {
		if (!max_khz)
			max_khz = cppc_get_dmi_max_khz();
		mul = max_khz;
		div = caps->highest_perf;
	}
	return (u64)perf * mul / div;
}

static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
					unsigned int freq)
{
	static u64 max_khz;
	struct cppc_perf_caps *caps = &cpu->perf_caps;
	u64  mul, div;

	if (caps->lowest_freq && caps->nominal_freq) {
		if (freq >= caps->nominal_freq) {
			mul = caps->nominal_perf;
			div = caps->nominal_freq;
		} else {
			mul = caps->lowest_perf;
			div = caps->lowest_freq;
		}
	} else {
		if (!max_khz)
			max_khz = cppc_get_dmi_max_khz();
		mul = caps->highest_perf;
		div = max_khz;
	}

	return (u64)freq * mul / div;
}

static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
		unsigned int target_freq,
		unsigned int relation)
{
	struct cppc_cpudata *cpu;
	struct cpufreq_freqs freqs;
	u32 desired_perf;
	int ret = 0;

	cpu = all_cpu_data[policy->cpu];

	desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
	/* Return if it is exactly the same perf */
	if (desired_perf == cpu->perf_ctrls.desired_perf)
		return ret;

	cpu->perf_ctrls.desired_perf = desired_perf;
	freqs.old = policy->cur;
	freqs.new = target_freq;

	cpufreq_freq_transition_begin(policy, &freqs);
	ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
	cpufreq_freq_transition_end(policy, &freqs, ret != 0);

	if (ret)
		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
				cpu->cpu, ret);

	return ret;
}

static int cppc_verify_policy(struct cpufreq_policy_data *policy)
{
	cpufreq_verify_within_cpu_limits(policy);
	return 0;
}

static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	int cpu_num = policy->cpu;
	struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
	int ret;

	cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;

	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
	if (ret)
		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
				cpu->perf_caps.lowest_perf, cpu_num, ret);
}

/*
 * The PCC subspace describes the rate at which platform can accept commands
 * on the shared PCC channel (including READs which do not count towards freq
 * trasition requests), so ideally we need to use the PCC values as a fallback
 * if we don't have a platform specific transition_delay_us
 */
#ifdef CONFIG_ARM64
#include <asm/cputype.h>

static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
{
	unsigned long implementor = read_cpuid_implementor();
	unsigned long part_num = read_cpuid_part_number();
	unsigned int delay_us = 0;

	switch (implementor) {
	case ARM_CPU_IMP_QCOM:
		switch (part_num) {
		case QCOM_CPU_PART_FALKOR_V1:
		case QCOM_CPU_PART_FALKOR:
			delay_us = 10000;
			break;
		default:
			delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
			break;
		}
		break;
	default:
		delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
		break;
	}

	return delay_us;
}

#else

static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
{
	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
}
#endif

static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	struct cppc_cpudata *cpu;
	unsigned int cpu_num = policy->cpu;
	int ret = 0;

	cpu = all_cpu_data[policy->cpu];

	cpu->cpu = cpu_num;
	ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);

	if (ret) {
		pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
				cpu_num, ret);
		return ret;
	}

	/* Convert the lowest and nominal freq from MHz to KHz */
	cpu->perf_caps.lowest_freq *= 1000;
	cpu->perf_caps.nominal_freq *= 1000;

	/*
	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
	 */
	policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
	policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);

	/*
	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
	 * available if userspace wants to use any perf between lowest & lowest
	 * nonlinear perf
	 */
	policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
	policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);

	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
	policy->shared_type = cpu->shared_type;

	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
		int i;

		cpumask_copy(policy->cpus, cpu->shared_cpu_map);

		for_each_cpu(i, policy->cpus) {
			if (unlikely(i == policy->cpu))
				continue;

			memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
			       sizeof(cpu->perf_caps));
		}
	} else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
		/* Support only SW_ANY for now. */
		pr_debug("Unsupported CPU co-ord type\n");
		return -EFAULT;
	}

	cpu->cur_policy = policy;

	/*
	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
	 * is supported.
	 */
	if (cpu->perf_caps.highest_perf > cpu->perf_caps.nominal_perf)
		boost_supported = true;

	/* Set policy->cur to max now. The governors will adjust later. */
	policy->cur = cppc_cpufreq_perf_to_khz(cpu,
					cpu->perf_caps.highest_perf);
	cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;

	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
	if (ret)
		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
				cpu->perf_caps.highest_perf, cpu_num, ret);

	return ret;
}

static inline u64 get_delta(u64 t1, u64 t0)
{
	if (t1 > t0 || t0 > ~(u32)0)
		return t1 - t0;

	return (u32)t1 - (u32)t0;
}

static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
				     struct cppc_perf_fb_ctrs fb_ctrs_t0,
				     struct cppc_perf_fb_ctrs fb_ctrs_t1)
{
	u64 delta_reference, delta_delivered;
	u64 reference_perf, delivered_perf;

	reference_perf = fb_ctrs_t0.reference_perf;

	delta_reference = get_delta(fb_ctrs_t1.reference,
				    fb_ctrs_t0.reference);
	delta_delivered = get_delta(fb_ctrs_t1.delivered,
				    fb_ctrs_t0.delivered);

	/* Check to avoid divide-by zero */
	if (delta_reference || delta_delivered)
		delivered_perf = (reference_perf * delta_delivered) /
					delta_reference;
	else
		delivered_perf = cpu->perf_ctrls.desired_perf;

	return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
}

static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
{
	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
	struct cppc_cpudata *cpu = all_cpu_data[cpunum];
	int ret;

	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
	if (ret)
		return ret;

	udelay(2); /* 2usec delay between sampling */

	ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
	if (ret)
		return ret;

	return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
}

static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
{
	struct cppc_cpudata *cpudata;
	int ret;

	if (!boost_supported) {
		pr_err("BOOST not supported by CPU or firmware\n");
		return -EINVAL;
	}

	cpudata = all_cpu_data[policy->cpu];
	if (state)
		policy->max = cppc_cpufreq_perf_to_khz(cpudata,
					cpudata->perf_caps.highest_perf);
	else
		policy->max = cppc_cpufreq_perf_to_khz(cpudata,
					cpudata->perf_caps.nominal_perf);
	policy->cpuinfo.max_freq = policy->max;

	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
	if (ret < 0)
		return ret;

	return 0;
}

static struct cpufreq_driver cppc_cpufreq_driver = {
	.flags = CPUFREQ_CONST_LOOPS,
	.verify = cppc_verify_policy,
	.target = cppc_cpufreq_set_target,
	.get = cppc_cpufreq_get_rate,
	.init = cppc_cpufreq_cpu_init,
	.stop_cpu = cppc_cpufreq_stop_cpu,
	.set_boost = cppc_cpufreq_set_boost,
	.name = "cppc_cpufreq",
};

/*
 * HISI platform does not support delivered performance counter and
 * reference performance counter. It can calculate the performance using the
 * platform specific mechanism. We reuse the desired performance register to
 * store the real performance calculated by the platform.
 */
static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
{
	struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
	u64 desired_perf;
	int ret;

	ret = cppc_get_desired_perf(cpunum, &desired_perf);
	if (ret < 0)
		return -EIO;

	return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
}

static void cppc_check_hisi_workaround(void)
{
	struct acpi_table_header *tbl;
	acpi_status status = AE_OK;
	int i;

	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
	if (ACPI_FAILURE(status) || !tbl)
		return;

	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
		    wa_info[i].oem_revision == tbl->oem_revision) {
			/* Overwrite the get() callback */
			cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
			break;
		}
	}

	acpi_put_table(tbl);
}

static int __init cppc_cpufreq_init(void)
{
	int i, ret = 0;
	struct cppc_cpudata *cpu;

	if (acpi_disabled)
		return -ENODEV;

	all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
			       GFP_KERNEL);
	if (!all_cpu_data)
		return -ENOMEM;

	for_each_possible_cpu(i) {
		all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
		if (!all_cpu_data[i])
			goto out;

		cpu = all_cpu_data[i];
		if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
			goto out;
	}

	ret = acpi_get_psd_map(all_cpu_data);
	if (ret) {
		pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
		goto out;
	}

	cppc_check_hisi_workaround();

	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
	if (ret)
		goto out;

	return ret;

out:
	for_each_possible_cpu(i) {
		cpu = all_cpu_data[i];
		if (!cpu)
			break;
		free_cpumask_var(cpu->shared_cpu_map);
		kfree(cpu);
	}

	kfree(all_cpu_data);
	return -ENODEV;
}

static void __exit cppc_cpufreq_exit(void)
{
	struct cppc_cpudata *cpu;
	int i;

	cpufreq_unregister_driver(&cppc_cpufreq_driver);

	for_each_possible_cpu(i) {
		cpu = all_cpu_data[i];
		free_cpumask_var(cpu->shared_cpu_map);
		kfree(cpu);
	}

	kfree(all_cpu_data);
}

module_exit(cppc_cpufreq_exit);
MODULE_AUTHOR("Ashwin Chaugule");
MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
MODULE_LICENSE("GPL");

late_initcall(cppc_cpufreq_init);

static const struct acpi_device_id cppc_acpi_ids[] __used = {
	{ACPI_PROCESSOR_DEVICE_HID, },
	{}
};

MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);