summaryrefslogtreecommitdiff
path: root/drivers/clocksource/hyperv_timer.c
blob: 2317d4e3daaffc2de01105f2b43cccc159ca5c20 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// SPDX-License-Identifier: GPL-2.0

/*
 * Clocksource driver for the synthetic counter and timers
 * provided by the Hyper-V hypervisor to guest VMs, as described
 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
 * is instruction set architecture independent.
 *
 * Copyright (C) 2019, Microsoft, Inc.
 *
 * Author:  Michael Kelley <mikelley@microsoft.com>
 */

#include <linux/percpu.h>
#include <linux/cpumask.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
#include <linux/mm.h>
#include <clocksource/hyperv_timer.h>
#include <asm/hyperv-tlfs.h>
#include <asm/mshyperv.h>

static struct clock_event_device __percpu *hv_clock_event;
static u64 hv_sched_clock_offset __ro_after_init;

/*
 * If false, we're using the old mechanism for stimer0 interrupts
 * where it sends a VMbus message when it expires. The old
 * mechanism is used when running on older versions of Hyper-V
 * that don't support Direct Mode. While Hyper-V provides
 * four stimer's per CPU, Linux uses only stimer0.
 */
static bool direct_mode_enabled;

static int stimer0_irq;
static int stimer0_vector;
static int stimer0_message_sint;

/*
 * ISR for when stimer0 is operating in Direct Mode.  Direct Mode
 * does not use VMbus or any VMbus messages, so process here and not
 * in the VMbus driver code.
 */
void hv_stimer0_isr(void)
{
	struct clock_event_device *ce;

	ce = this_cpu_ptr(hv_clock_event);
	ce->event_handler(ce);
}
EXPORT_SYMBOL_GPL(hv_stimer0_isr);

static int hv_ce_set_next_event(unsigned long delta,
				struct clock_event_device *evt)
{
	u64 current_tick;

	current_tick = hyperv_cs->read(NULL);
	current_tick += delta;
	hv_init_timer(0, current_tick);
	return 0;
}

static int hv_ce_shutdown(struct clock_event_device *evt)
{
	hv_init_timer(0, 0);
	hv_init_timer_config(0, 0);
	if (direct_mode_enabled)
		hv_disable_stimer0_percpu_irq(stimer0_irq);

	return 0;
}

static int hv_ce_set_oneshot(struct clock_event_device *evt)
{
	union hv_stimer_config timer_cfg;

	timer_cfg.as_uint64 = 0;
	timer_cfg.enable = 1;
	timer_cfg.auto_enable = 1;
	if (direct_mode_enabled) {
		/*
		 * When it expires, the timer will directly interrupt
		 * on the specified hardware vector/IRQ.
		 */
		timer_cfg.direct_mode = 1;
		timer_cfg.apic_vector = stimer0_vector;
		hv_enable_stimer0_percpu_irq(stimer0_irq);
	} else {
		/*
		 * When it expires, the timer will generate a VMbus message,
		 * to be handled by the normal VMbus interrupt handler.
		 */
		timer_cfg.direct_mode = 0;
		timer_cfg.sintx = stimer0_message_sint;
	}
	hv_init_timer_config(0, timer_cfg.as_uint64);
	return 0;
}

/*
 * hv_stimer_init - Per-cpu initialization of the clockevent
 */
void hv_stimer_init(unsigned int cpu)
{
	struct clock_event_device *ce;

	/*
	 * Synthetic timers are always available except on old versions of
	 * Hyper-V on x86.  In that case, just return as Linux will use a
	 * clocksource based on emulated PIT or LAPIC timer hardware.
	 */
	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
		return;

	ce = per_cpu_ptr(hv_clock_event, cpu);
	ce->name = "Hyper-V clockevent";
	ce->features = CLOCK_EVT_FEAT_ONESHOT;
	ce->cpumask = cpumask_of(cpu);
	ce->rating = 1000;
	ce->set_state_shutdown = hv_ce_shutdown;
	ce->set_state_oneshot = hv_ce_set_oneshot;
	ce->set_next_event = hv_ce_set_next_event;

	clockevents_config_and_register(ce,
					HV_CLOCK_HZ,
					HV_MIN_DELTA_TICKS,
					HV_MAX_MAX_DELTA_TICKS);
}
EXPORT_SYMBOL_GPL(hv_stimer_init);

/*
 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
 */
void hv_stimer_cleanup(unsigned int cpu)
{
	struct clock_event_device *ce;

	/* Turn off clockevent device */
	if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
		ce = per_cpu_ptr(hv_clock_event, cpu);
		hv_ce_shutdown(ce);
	}
}
EXPORT_SYMBOL_GPL(hv_stimer_cleanup);

/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
int hv_stimer_alloc(int sint)
{
	int ret;

	hv_clock_event = alloc_percpu(struct clock_event_device);
	if (!hv_clock_event)
		return -ENOMEM;

	direct_mode_enabled = ms_hyperv.misc_features &
			HV_STIMER_DIRECT_MODE_AVAILABLE;
	if (direct_mode_enabled) {
		ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
				hv_stimer0_isr);
		if (ret) {
			free_percpu(hv_clock_event);
			hv_clock_event = NULL;
			return ret;
		}
	}

	stimer0_message_sint = sint;
	return 0;
}
EXPORT_SYMBOL_GPL(hv_stimer_alloc);

/* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
void hv_stimer_free(void)
{
	if (direct_mode_enabled && (stimer0_irq != 0)) {
		hv_remove_stimer0_irq(stimer0_irq);
		stimer0_irq = 0;
	}
	free_percpu(hv_clock_event);
	hv_clock_event = NULL;
}
EXPORT_SYMBOL_GPL(hv_stimer_free);

/*
 * Do a global cleanup of clockevents for the cases of kexec and
 * vmbus exit
 */
void hv_stimer_global_cleanup(void)
{
	int	cpu;
	struct clock_event_device *ce;

	if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
		for_each_present_cpu(cpu) {
			ce = per_cpu_ptr(hv_clock_event, cpu);
			clockevents_unbind_device(ce, cpu);
		}
	}
	hv_stimer_free();
}
EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);

/*
 * Code and definitions for the Hyper-V clocksources.  Two
 * clocksources are defined: one that reads the Hyper-V defined MSR, and
 * the other that uses the TSC reference page feature as defined in the
 * TLFS.  The MSR version is for compatibility with old versions of
 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
 */

struct clocksource *hyperv_cs;
EXPORT_SYMBOL_GPL(hyperv_cs);

static struct ms_hyperv_tsc_page tsc_pg __aligned(PAGE_SIZE);

struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
{
	return &tsc_pg;
}
EXPORT_SYMBOL_GPL(hv_get_tsc_page);

static u64 notrace read_hv_clock_tsc(struct clocksource *arg)
{
	u64 current_tick = hv_read_tsc_page(&tsc_pg);

	if (current_tick == U64_MAX)
		hv_get_time_ref_count(current_tick);

	return current_tick;
}

static u64 read_hv_sched_clock_tsc(void)
{
	return read_hv_clock_tsc(NULL) - hv_sched_clock_offset;
}

static struct clocksource hyperv_cs_tsc = {
	.name	= "hyperv_clocksource_tsc_page",
	.rating	= 400,
	.read	= read_hv_clock_tsc,
	.mask	= CLOCKSOURCE_MASK(64),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static u64 notrace read_hv_clock_msr(struct clocksource *arg)
{
	u64 current_tick;
	/*
	 * Read the partition counter to get the current tick count. This count
	 * is set to 0 when the partition is created and is incremented in
	 * 100 nanosecond units.
	 */
	hv_get_time_ref_count(current_tick);
	return current_tick;
}

static u64 read_hv_sched_clock_msr(void)
{
	return read_hv_clock_msr(NULL) - hv_sched_clock_offset;
}

static struct clocksource hyperv_cs_msr = {
	.name	= "hyperv_clocksource_msr",
	.rating	= 400,
	.read	= read_hv_clock_msr,
	.mask	= CLOCKSOURCE_MASK(64),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

static bool __init hv_init_tsc_clocksource(void)
{
	u64		tsc_msr;
	phys_addr_t	phys_addr;

	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
		return false;

	hyperv_cs = &hyperv_cs_tsc;
	phys_addr = virt_to_phys(&tsc_pg);

	/*
	 * The Hyper-V TLFS specifies to preserve the value of reserved
	 * bits in registers. So read the existing value, preserve the
	 * low order 12 bits, and add in the guest physical address
	 * (which already has at least the low 12 bits set to zero since
	 * it is page aligned). Also set the "enable" bit, which is bit 0.
	 */
	hv_get_reference_tsc(tsc_msr);
	tsc_msr &= GENMASK_ULL(11, 0);
	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
	hv_set_reference_tsc(tsc_msr);

	hv_set_clocksource_vdso(hyperv_cs_tsc);
	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);

	hv_sched_clock_offset = hyperv_cs->read(hyperv_cs);
	hv_setup_sched_clock(read_hv_sched_clock_tsc);

	return true;
}

void __init hv_init_clocksource(void)
{
	/*
	 * Try to set up the TSC page clocksource. If it succeeds, we're
	 * done. Otherwise, set up the MSR clocksoruce.  At least one of
	 * these will always be available except on very old versions of
	 * Hyper-V on x86.  In that case we won't have a Hyper-V
	 * clocksource, but Linux will still run with a clocksource based
	 * on the emulated PIT or LAPIC timer.
	 */
	if (hv_init_tsc_clocksource())
		return;

	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
		return;

	hyperv_cs = &hyperv_cs_msr;
	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);

	hv_sched_clock_offset = hyperv_cs->read(hyperv_cs);
	hv_setup_sched_clock(read_hv_sched_clock_msr);
}
EXPORT_SYMBOL_GPL(hv_init_clocksource);