summaryrefslogtreecommitdiff
path: root/drivers/clk/clk-cdce925.c
blob: b8459c14a1b7245855a4b91eba0783da0cbf3d6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/*
 * Driver for TI Dual PLL CDCE925 clock synthesizer
 *
 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
 * basis. Clients can directly request any frequency that the chip can
 * deliver using the standard clk framework. In addition, the device can
 * be configured and activated via the devicetree.
 *
 * Copyright (C) 2014, Topic Embedded Products
 * Licenced under GPL
 */
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/gcd.h>

/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
 * Model this as 2 PLL clocks which are parents to the outputs.
 */
#define NUMBER_OF_PLLS	2
#define NUMBER_OF_OUTPUTS	5

#define CDCE925_REG_GLOBAL1	0x01
#define CDCE925_REG_Y1SPIPDIVH	0x02
#define CDCE925_REG_PDIVL	0x03
#define CDCE925_REG_XCSEL	0x05
/* PLL parameters start at 0x10, steps of 0x10 */
#define CDCE925_OFFSET_PLL	0x10
/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
#define CDCE925_PLL_MUX_OUTPUTS	0x14
#define CDCE925_PLL_MULDIV	0x18

#define CDCE925_PLL_FREQUENCY_MIN	 80000000ul
#define CDCE925_PLL_FREQUENCY_MAX	230000000ul
struct clk_cdce925_chip;

struct clk_cdce925_output {
	struct clk_hw hw;
	struct clk_cdce925_chip *chip;
	u8 index;
	u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
};
#define to_clk_cdce925_output(_hw) \
	container_of(_hw, struct clk_cdce925_output, hw)

struct clk_cdce925_pll {
	struct clk_hw hw;
	struct clk_cdce925_chip *chip;
	u8 index;
	u16 m;   /* 1..511 */
	u16 n;   /* 1..4095 */
};
#define to_clk_cdce925_pll(_hw)	container_of(_hw, struct clk_cdce925_pll, hw)

struct clk_cdce925_chip {
	struct regmap *regmap;
	struct i2c_client *i2c_client;
	struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
	struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
};

/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */

static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
	u16 n, u16 m)
{
	if ((!m || !n) || (m == n))
		return parent_rate; /* In bypass mode runs at same frequency */
	return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
}

static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);

	return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
}

static void cdce925_pll_find_rate(unsigned long rate,
		unsigned long parent_rate, u16 *n, u16 *m)
{
	unsigned long un;
	unsigned long um;
	unsigned long g;

	if (rate <= parent_rate) {
		/* Can always deliver parent_rate in bypass mode */
		rate = parent_rate;
		*n = 0;
		*m = 0;
	} else {
		/* In PLL mode, need to apply min/max range */
		if (rate < CDCE925_PLL_FREQUENCY_MIN)
			rate = CDCE925_PLL_FREQUENCY_MIN;
		else if (rate > CDCE925_PLL_FREQUENCY_MAX)
			rate = CDCE925_PLL_FREQUENCY_MAX;

		g = gcd(rate, parent_rate);
		um = parent_rate / g;
		un = rate / g;
		/* When outside hw range, reduce to fit (rounding errors) */
		while ((un > 4095) || (um > 511)) {
			un >>= 1;
			um >>= 1;
		}
		if (un == 0)
			un = 1;
		if (um == 0)
			um = 1;

		*n = un;
		*m = um;
	}
}

static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *parent_rate)
{
	u16 n, m;

	cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
	return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
}

static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);

	if (!rate || (rate == parent_rate)) {
		data->m = 0; /* Bypass mode */
		data->n = 0;
		return 0;
	}

	if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
		(rate > CDCE925_PLL_FREQUENCY_MAX)) {
		pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
		return -EINVAL;
	}

	if (rate < parent_rate) {
		pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
			rate, parent_rate);
		return -EINVAL;
	}

	cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
	return 0;
}


/* calculate p = max(0, 4 - int(log2 (n/m))) */
static u8 cdce925_pll_calc_p(u16 n, u16 m)
{
	u8 p;
	u16 r = n / m;

	if (r >= 16)
		return 0;
	p = 4;
	while (r > 1) {
		r >>= 1;
		--p;
	}
	return p;
}

/* Returns VCO range bits for VCO1_0_RANGE */
static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
{
	struct clk *parent = clk_get_parent(hw->clk);
	unsigned long rate = clk_get_rate(parent);

	rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
	if (rate >= 175000000)
		return 0x3;
	if (rate >= 150000000)
		return 0x02;
	if (rate >= 125000000)
		return 0x01;
	return 0x00;
}

/* I2C clock, hence everything must happen in (un)prepare because this
 * may sleep */
static int cdce925_pll_prepare(struct clk_hw *hw)
{
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
	u16 n = data->n;
	u16 m = data->m;
	u16 r;
	u8 q;
	u8 p;
	u16 nn;
	u8 pll[4]; /* Bits are spread out over 4 byte registers */
	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
	unsigned i;

	if ((!m || !n) || (m == n)) {
		/* Set PLL mux to bypass mode, leave the rest as is */
		regmap_update_bits(data->chip->regmap,
			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
	} else {
		/* According to data sheet: */
		/* p = max(0, 4 - int(log2 (n/m))) */
		p = cdce925_pll_calc_p(n, m);
		/* nn = n * 2^p */
		nn = n * BIT(p);
		/* q = int(nn/m) */
		q = nn / m;
		if ((q < 16) || (1 > 64)) {
			pr_debug("%s invalid q=%d\n", __func__, q);
			return -EINVAL;
		}
		r = nn - (m*q);
		if (r > 511) {
			pr_debug("%s invalid r=%d\n", __func__, r);
			return -EINVAL;
		}
		pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
			n, m, p, q, r);
		/* encode into register bits */
		pll[0] = n >> 4;
		pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
		pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
		pll[3] = ((q & 0x07) << 5) | (p << 2) |
				cdce925_pll_calc_range_bits(hw, n, m);
		/* Write to registers */
		for (i = 0; i < ARRAY_SIZE(pll); ++i)
			regmap_write(data->chip->regmap,
				reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
		/* Enable PLL */
		regmap_update_bits(data->chip->regmap,
			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
	}

	return 0;
}

static void cdce925_pll_unprepare(struct clk_hw *hw)
{
	struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
	u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;

	regmap_update_bits(data->chip->regmap,
			reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
}

static const struct clk_ops cdce925_pll_ops = {
	.prepare = cdce925_pll_prepare,
	.unprepare = cdce925_pll_unprepare,
	.recalc_rate = cdce925_pll_recalc_rate,
	.round_rate = cdce925_pll_round_rate,
	.set_rate = cdce925_pll_set_rate,
};


static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
{
	switch (data->index) {
	case 0:
		regmap_update_bits(data->chip->regmap,
			CDCE925_REG_Y1SPIPDIVH,
			0x03, (pdiv >> 8) & 0x03);
		regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
		break;
	case 1:
		regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
		break;
	case 2:
		regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
		break;
	case 3:
		regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
		break;
	case 4:
		regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
		break;
	}
}

static void cdce925_clk_activate(struct clk_cdce925_output *data)
{
	switch (data->index) {
	case 0:
		regmap_update_bits(data->chip->regmap,
			CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
		break;
	case 1:
	case 2:
		regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
		break;
	case 3:
	case 4:
		regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
		break;
	}
}

static int cdce925_clk_prepare(struct clk_hw *hw)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	cdce925_clk_set_pdiv(data, data->pdiv);
	cdce925_clk_activate(data);
	return 0;
}

static void cdce925_clk_unprepare(struct clk_hw *hw)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	/* Disable clock by setting divider to "0" */
	cdce925_clk_set_pdiv(data, 0);
}

static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	if (data->pdiv)
		return parent_rate / data->pdiv;
	return 0;
}

static u16 cdce925_calc_divider(unsigned long rate,
		unsigned long parent_rate)
{
	unsigned long divider;

	if (!rate)
		return 0;
	if (rate >= parent_rate)
		return 1;

	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
	if (divider > 0x7F)
		divider = 0x7F;

	return (u16)divider;
}

static unsigned long cdce925_clk_best_parent_rate(
	struct clk_hw *hw, unsigned long rate)
{
	struct clk *pll = clk_get_parent(hw->clk);
	struct clk *root = clk_get_parent(pll);
	unsigned long root_rate = clk_get_rate(root);
	unsigned long best_rate_error = rate;
	u16 pdiv_min;
	u16 pdiv_max;
	u16 pdiv_best;
	u16 pdiv_now;

	if (root_rate % rate == 0)
		return root_rate; /* Don't need the PLL, use bypass */

	pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
	pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);

	if (pdiv_min > pdiv_max)
		return 0; /* No can do? */

	pdiv_best = pdiv_min;
	for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
		unsigned long target_rate = rate * pdiv_now;
		long pll_rate = clk_round_rate(pll, target_rate);
		unsigned long actual_rate;
		unsigned long rate_error;

		if (pll_rate <= 0)
			continue;
		actual_rate = pll_rate / pdiv_now;
		rate_error = abs((long)actual_rate - (long)rate);
		if (rate_error < best_rate_error) {
			pdiv_best = pdiv_now;
			best_rate_error = rate_error;
		}
		/* TODO: Consider PLL frequency based on smaller n/m values
		 * and pick the better one if the error is equal */
	}

	return rate * pdiv_best;
}

static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *parent_rate)
{
	unsigned long l_parent_rate = *parent_rate;
	u16 divider = cdce925_calc_divider(rate, l_parent_rate);

	if (l_parent_rate / divider != rate) {
		l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
		divider = cdce925_calc_divider(rate, l_parent_rate);
		*parent_rate = l_parent_rate;
	}

	if (divider)
		return (long)(l_parent_rate / divider);
	return 0;
}

static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	data->pdiv = cdce925_calc_divider(rate, parent_rate);

	return 0;
}

static const struct clk_ops cdce925_clk_ops = {
	.prepare = cdce925_clk_prepare,
	.unprepare = cdce925_clk_unprepare,
	.recalc_rate = cdce925_clk_recalc_rate,
	.round_rate = cdce925_clk_round_rate,
	.set_rate = cdce925_clk_set_rate,
};


static u16 cdce925_y1_calc_divider(unsigned long rate,
		unsigned long parent_rate)
{
	unsigned long divider;

	if (!rate)
		return 0;
	if (rate >= parent_rate)
		return 1;

	divider = DIV_ROUND_CLOSEST(parent_rate, rate);
	if (divider > 0x3FF) /* Y1 has 10-bit divider */
		divider = 0x3FF;

	return (u16)divider;
}

static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *parent_rate)
{
	unsigned long l_parent_rate = *parent_rate;
	u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);

	if (divider)
		return (long)(l_parent_rate / divider);
	return 0;
}

static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_cdce925_output *data = to_clk_cdce925_output(hw);

	data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);

	return 0;
}

static const struct clk_ops cdce925_clk_y1_ops = {
	.prepare = cdce925_clk_prepare,
	.unprepare = cdce925_clk_unprepare,
	.recalc_rate = cdce925_clk_recalc_rate,
	.round_rate = cdce925_clk_y1_round_rate,
	.set_rate = cdce925_clk_y1_set_rate,
};


static struct regmap_config cdce925_regmap_config = {
	.name = "configuration0",
	.reg_bits = 8,
	.val_bits = 8,
	.cache_type = REGCACHE_RBTREE,
	.max_register = 0x2F,
};

#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER	0x00
#define CDCE925_I2C_COMMAND_BYTE_TRANSFER	0x80

static int cdce925_regmap_i2c_write(
	void *context, const void *data, size_t count)
{
	struct device *dev = context;
	struct i2c_client *i2c = to_i2c_client(dev);
	int ret;
	u8 reg_data[2];

	if (count != 2)
		return -ENOTSUPP;

	/* First byte is command code */
	reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
	reg_data[1] = ((u8 *)data)[1];

	dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
			reg_data[0], reg_data[1]);

	ret = i2c_master_send(i2c, reg_data, count);
	if (likely(ret == count))
		return 0;
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}

static int cdce925_regmap_i2c_read(void *context,
	   const void *reg, size_t reg_size, void *val, size_t val_size)
{
	struct device *dev = context;
	struct i2c_client *i2c = to_i2c_client(dev);
	struct i2c_msg xfer[2];
	int ret;
	u8 reg_data[2];

	if (reg_size != 1)
		return -ENOTSUPP;

	xfer[0].addr = i2c->addr;
	xfer[0].flags = 0;
	xfer[0].buf = reg_data;
	if (val_size == 1) {
		reg_data[0] =
			CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
		xfer[0].len = 1;
	} else {
		reg_data[0] =
			CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
		reg_data[1] = val_size;
		xfer[0].len = 2;
	}

	xfer[1].addr = i2c->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = val_size;
	xfer[1].buf = val;

	ret = i2c_transfer(i2c->adapter, xfer, 2);
	if (likely(ret == 2)) {
		dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
				reg_size, val_size, reg_data[0], *((u8 *)val));
		return 0;
	} else if (ret < 0)
		return ret;
	else
		return -EIO;
}

static struct clk_hw *
of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
{
	struct clk_cdce925_chip *data = _data;
	unsigned int idx = clkspec->args[0];

	if (idx >= ARRAY_SIZE(data->clk)) {
		pr_err("%s: invalid index %u\n", __func__, idx);
		return ERR_PTR(-EINVAL);
	}

	return &data->clk[idx].hw;
}

/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
 * just weird, so just use the single byte mode exclusively. */
static struct regmap_bus regmap_cdce925_bus = {
	.write = cdce925_regmap_i2c_write,
	.read = cdce925_regmap_i2c_read,
};

static int cdce925_probe(struct i2c_client *client,
		const struct i2c_device_id *id)
{
	struct clk_cdce925_chip *data;
	struct device_node *node = client->dev.of_node;
	const char *parent_name;
	const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
	struct clk_init_data init;
	u32 value;
	int i;
	int err;
	struct device_node *np_output;
	char child_name[6];

	dev_dbg(&client->dev, "%s\n", __func__);
	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->i2c_client = client;
	data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
			&client->dev, &cdce925_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(&client->dev, "failed to allocate register map\n");
		return PTR_ERR(data->regmap);
	}
	i2c_set_clientdata(client, data);

	parent_name = of_clk_get_parent_name(node, 0);
	if (!parent_name) {
		dev_err(&client->dev, "missing parent clock\n");
		return -ENODEV;
	}
	dev_dbg(&client->dev, "parent is: %s\n", parent_name);

	if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
		regmap_write(data->regmap,
			CDCE925_REG_XCSEL, (value << 3) & 0xF8);
	/* PWDN bit */
	regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);

	/* Set input source for Y1 to be the XTAL */
	regmap_update_bits(data->regmap, 0x02, BIT(7), 0);

	init.ops = &cdce925_pll_ops;
	init.flags = 0;
	init.parent_names = &parent_name;
	init.num_parents = parent_name ? 1 : 0;

	/* Register PLL clocks */
	for (i = 0; i < NUMBER_OF_PLLS; ++i) {
		pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
			client->dev.of_node->name, i);
		init.name = pll_clk_name[i];
		data->pll[i].chip = data;
		data->pll[i].hw.init = &init;
		data->pll[i].index = i;
		err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
		if (err) {
			dev_err(&client->dev, "Failed register PLL %d\n", i);
			goto error;
		}
		sprintf(child_name, "PLL%d", i+1);
		np_output = of_get_child_by_name(node, child_name);
		if (!np_output)
			continue;
		if (!of_property_read_u32(np_output,
			"clock-frequency", &value)) {
			err = clk_set_rate(data->pll[i].hw.clk, value);
			if (err)
				dev_err(&client->dev,
					"unable to set PLL frequency %ud\n",
					value);
		}
		if (!of_property_read_u32(np_output,
			"spread-spectrum", &value)) {
			u8 flag = of_property_read_bool(np_output,
				"spread-spectrum-center") ? 0x80 : 0x00;
			regmap_update_bits(data->regmap,
				0x16 + (i*CDCE925_OFFSET_PLL),
				0x80, flag);
			regmap_update_bits(data->regmap,
				0x12 + (i*CDCE925_OFFSET_PLL),
				0x07, value & 0x07);
		}
	}

	/* Register output clock Y1 */
	init.ops = &cdce925_clk_y1_ops;
	init.flags = 0;
	init.num_parents = 1;
	init.parent_names = &parent_name; /* Mux Y1 to input */
	init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
	data->clk[0].chip = data;
	data->clk[0].hw.init = &init;
	data->clk[0].index = 0;
	data->clk[0].pdiv = 1;
	err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
	kfree(init.name); /* clock framework made a copy of the name */
	if (err) {
		dev_err(&client->dev, "clock registration Y1 failed\n");
		goto error;
	}

	/* Register output clocks Y2 .. Y5*/
	init.ops = &cdce925_clk_ops;
	init.flags = CLK_SET_RATE_PARENT;
	init.num_parents = 1;
	for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
		init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
			client->dev.of_node->name, i+1);
		data->clk[i].chip = data;
		data->clk[i].hw.init = &init;
		data->clk[i].index = i;
		data->clk[i].pdiv = 1;
		switch (i) {
		case 1:
		case 2:
			/* Mux Y2/3 to PLL1 */
			init.parent_names = &pll_clk_name[0];
			break;
		case 3:
		case 4:
			/* Mux Y4/5 to PLL2 */
			init.parent_names = &pll_clk_name[1];
			break;
		}
		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
		kfree(init.name); /* clock framework made a copy of the name */
		if (err) {
			dev_err(&client->dev, "clock registration failed\n");
			goto error;
		}
	}

	/* Register the output clocks */
	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
				  data);
	if (err)
		dev_err(&client->dev, "unable to add OF clock provider\n");

	err = 0;

error:
	for (i = 0; i < NUMBER_OF_PLLS; ++i)
		/* clock framework made a copy of the name */
		kfree(pll_clk_name[i]);

	return err;
}

static const struct i2c_device_id cdce925_id[] = {
	{ "cdce925", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, cdce925_id);

static const struct of_device_id clk_cdce925_of_match[] = {
	{ .compatible = "ti,cdce925" },
	{ },
};
MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);

static struct i2c_driver cdce925_driver = {
	.driver = {
		.name = "cdce925",
		.of_match_table = of_match_ptr(clk_cdce925_of_match),
	},
	.probe		= cdce925_probe,
	.id_table	= cdce925_id,
};
module_i2c_driver(cdce925_driver);

MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
MODULE_DESCRIPTION("cdce925 driver");
MODULE_LICENSE("GPL");