1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Driver for an SoC block (Numerically Controlled Oscillator)
* found on t8103 (M1) and other Apple chips
*
* Copyright (C) The Asahi Linux Contributors
*/
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#define NCO_CHANNEL_STRIDE 0x4000
#define NCO_CHANNEL_REGSIZE 20
#define REG_CTRL 0
#define CTRL_ENABLE BIT(31)
#define REG_DIV 4
#define DIV_FINE GENMASK(1, 0)
#define DIV_COARSE GENMASK(12, 2)
#define REG_INC1 8
#define REG_INC2 12
#define REG_ACCINIT 16
/*
* Theory of operation (postulated)
*
* The REG_DIV register indirectly expresses a base integer divisor, roughly
* corresponding to twice the desired ratio of input to output clock. This
* base divisor is adjusted on a cycle-by-cycle basis based on the state of a
* 32-bit phase accumulator to achieve a desired precise clock ratio over the
* long term.
*
* Specifically an output clock cycle is produced after (REG_DIV divisor)/2
* or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top
* bit of the 32-bit accumulator is set. The accumulator is incremented each
* produced output cycle, by the value from either REG_INC1 or REG_INC2, which
* of the two is selected depending again on the accumulator's current top bit.
*
* Because the NCO hardware implements counting of input clock cycles in part
* in a Galois linear-feedback shift register, the higher bits of divisor
* are programmed into REG_DIV by picking an appropriate LFSR state. See
* applnco_compute_tables/applnco_div_translate for details on this.
*/
#define LFSR_POLY 0xa01
#define LFSR_INIT 0x7ff
#define LFSR_LEN 11
#define LFSR_PERIOD ((1 << LFSR_LEN) - 1)
#define LFSR_TBLSIZE (1 << LFSR_LEN)
/* The minimal attainable coarse divisor (first value in table) */
#define COARSE_DIV_OFFSET 2
struct applnco_tables {
u16 fwd[LFSR_TBLSIZE];
u16 inv[LFSR_TBLSIZE];
};
struct applnco_channel {
void __iomem *base;
struct applnco_tables *tbl;
struct clk_hw hw;
spinlock_t lock;
};
#define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw)
static void applnco_enable_nolock(struct clk_hw *hw)
{
struct applnco_channel *chan = to_applnco_channel(hw);
u32 val;
val = readl_relaxed(chan->base + REG_CTRL);
writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL);
}
static void applnco_disable_nolock(struct clk_hw *hw)
{
struct applnco_channel *chan = to_applnco_channel(hw);
u32 val;
val = readl_relaxed(chan->base + REG_CTRL);
writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL);
}
static int applnco_is_enabled(struct clk_hw *hw)
{
struct applnco_channel *chan = to_applnco_channel(hw);
return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0;
}
static void applnco_compute_tables(struct applnco_tables *tbl)
{
int i;
u32 state = LFSR_INIT;
/*
* Go through the states of a Galois LFSR and build
* a coarse divisor translation table.
*/
for (i = LFSR_PERIOD; i > 0; i--) {
if (state & 1)
state = (state >> 1) ^ (LFSR_POLY >> 1);
else
state = (state >> 1);
tbl->fwd[i] = state;
tbl->inv[state] = i;
}
/* Zero value is special-cased */
tbl->fwd[0] = 0;
tbl->inv[0] = 0;
}
static bool applnco_div_out_of_range(unsigned int div)
{
unsigned int coarse = div / 4;
return coarse < COARSE_DIV_OFFSET ||
coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE;
}
static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div)
{
unsigned int coarse = div / 4;
if (WARN_ON(applnco_div_out_of_range(div)))
return 0;
return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) |
FIELD_PREP(DIV_FINE, div % 4);
}
static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval)
{
unsigned int coarse, fine;
coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET;
fine = FIELD_GET(DIV_FINE, regval);
return coarse * 4 + fine;
}
static int applnco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct applnco_channel *chan = to_applnco_channel(hw);
unsigned long flags;
u32 div, inc1, inc2;
bool was_enabled;
div = 2 * parent_rate / rate;
inc1 = 2 * parent_rate - div * rate;
inc2 = inc1 - rate;
if (applnco_div_out_of_range(div))
return -EINVAL;
div = applnco_div_translate(chan->tbl, div);
spin_lock_irqsave(&chan->lock, flags);
was_enabled = applnco_is_enabled(hw);
applnco_disable_nolock(hw);
writel_relaxed(div, chan->base + REG_DIV);
writel_relaxed(inc1, chan->base + REG_INC1);
writel_relaxed(inc2, chan->base + REG_INC2);
/* Presumably a neutral initial value for accumulator */
writel_relaxed(1 << 31, chan->base + REG_ACCINIT);
if (was_enabled)
applnco_enable_nolock(hw);
spin_unlock_irqrestore(&chan->lock, flags);
return 0;
}
static unsigned long applnco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct applnco_channel *chan = to_applnco_channel(hw);
u32 div, inc1, inc2, incbase;
div = applnco_div_translate_inv(chan->tbl,
readl_relaxed(chan->base + REG_DIV));
inc1 = readl_relaxed(chan->base + REG_INC1);
inc2 = readl_relaxed(chan->base + REG_INC2);
/*
* We don't support wraparound of accumulator
* nor the edge case of both increments being zero
*/
if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0))
return 0;
/* Scale both sides of division by incbase to maintain precision */
incbase = inc1 - inc2;
return div64_u64(((u64) parent_rate) * 2 * incbase,
((u64) div) * incbase + inc1);
}
static long applnco_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1;
unsigned long hi = *parent_rate / COARSE_DIV_OFFSET;
return clamp(rate, lo, hi);
}
static int applnco_enable(struct clk_hw *hw)
{
struct applnco_channel *chan = to_applnco_channel(hw);
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
applnco_enable_nolock(hw);
spin_unlock_irqrestore(&chan->lock, flags);
return 0;
}
static void applnco_disable(struct clk_hw *hw)
{
struct applnco_channel *chan = to_applnco_channel(hw);
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
applnco_disable_nolock(hw);
spin_unlock_irqrestore(&chan->lock, flags);
}
static const struct clk_ops applnco_ops = {
.set_rate = applnco_set_rate,
.recalc_rate = applnco_recalc_rate,
.round_rate = applnco_round_rate,
.enable = applnco_enable,
.disable = applnco_disable,
.is_enabled = applnco_is_enabled,
};
static int applnco_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct clk_parent_data pdata = { .index = 0 };
struct clk_init_data init;
struct clk_hw_onecell_data *onecell_data;
void __iomem *base;
struct resource *res;
struct applnco_tables *tbl;
unsigned int nchannels;
int ret, i;
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(base))
return PTR_ERR(base);
if (resource_size(res) < NCO_CHANNEL_REGSIZE)
return -EINVAL;
nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE)
/ NCO_CHANNEL_STRIDE + 1;
onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws,
nchannels), GFP_KERNEL);
if (!onecell_data)
return -ENOMEM;
onecell_data->num = nchannels;
tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL);
if (!tbl)
return -ENOMEM;
applnco_compute_tables(tbl);
for (i = 0; i < nchannels; i++) {
struct applnco_channel *chan;
chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
chan->base = base + NCO_CHANNEL_STRIDE * i;
chan->tbl = tbl;
spin_lock_init(&chan->lock);
memset(&init, 0, sizeof(init));
init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
"%s-%d", np->name, i);
init.ops = &applnco_ops;
init.parent_data = &pdata;
init.num_parents = 1;
init.flags = 0;
chan->hw.init = &init;
ret = devm_clk_hw_register(&pdev->dev, &chan->hw);
if (ret)
return ret;
onecell_data->hws[i] = &chan->hw;
}
return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get,
onecell_data);
}
static const struct of_device_id applnco_ids[] = {
{ .compatible = "apple,nco" },
{ }
};
MODULE_DEVICE_TABLE(of, applnco_ids)
static struct platform_driver applnco_driver = {
.driver = {
.name = "apple-nco",
.of_match_table = applnco_ids,
},
.probe = applnco_probe,
};
module_platform_driver(applnco_driver);
MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs");
MODULE_LICENSE("GPL");
|