summaryrefslogtreecommitdiff
path: root/drivers/clk/bcm/clk-kona.c
blob: e3d339e08309f66ac61d2286c7c28bca9c4cec76 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
/*
 * Copyright (C) 2013 Broadcom Corporation
 * Copyright 2013 Linaro Limited
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "clk-kona.h"

#include <linux/delay.h>

#define CCU_ACCESS_PASSWORD      0xA5A500
#define CLK_GATE_DELAY_LOOP      2000

/* Bitfield operations */

/* Produces a mask of set bits covering a range of a 32-bit value */
static inline u32 bitfield_mask(u32 shift, u32 width)
{
	return ((1 << width) - 1) << shift;
}

/* Extract the value of a bitfield found within a given register value */
static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
{
	return (reg_val & bitfield_mask(shift, width)) >> shift;
}

/* Replace the value of a bitfield found within a given register value */
static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
{
	u32 mask = bitfield_mask(shift, width);

	return (reg_val & ~mask) | (val << shift);
}

/* Divider and scaling helpers */

/*
 * Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values
 * unsigned.  Note that unlike do_div(), the remainder is discarded
 * and the return value is the quotient (not the remainder).
 */
u64 do_div_round_closest(u64 dividend, unsigned long divisor)
{
	u64 result;

	result = dividend + ((u64)divisor >> 1);
	(void)do_div(result, divisor);

	return result;
}

/* Convert a divider into the scaled divisor value it represents. */
static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
{
	return (u64)reg_div + ((u64)1 << div->frac_width);
}

/*
 * Build a scaled divider value as close as possible to the
 * given whole part (div_value) and fractional part (expressed
 * in billionths).
 */
u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
{
	u64 combined;

	BUG_ON(!div_value);
	BUG_ON(billionths >= BILLION);

	combined = (u64)div_value * BILLION + billionths;
	combined <<= div->frac_width;

	return do_div_round_closest(combined, BILLION);
}

/* The scaled minimum divisor representable by a divider */
static inline u64
scaled_div_min(struct bcm_clk_div *div)
{
	if (divider_is_fixed(div))
		return (u64)div->fixed;

	return scaled_div_value(div, 0);
}

/* The scaled maximum divisor representable by a divider */
u64 scaled_div_max(struct bcm_clk_div *div)
{
	u32 reg_div;

	if (divider_is_fixed(div))
		return (u64)div->fixed;

	reg_div = ((u32)1 << div->width) - 1;

	return scaled_div_value(div, reg_div);
}

/*
 * Convert a scaled divisor into its divider representation as
 * stored in a divider register field.
 */
static inline u32
divider(struct bcm_clk_div *div, u64 scaled_div)
{
	BUG_ON(scaled_div < scaled_div_min(div));
	BUG_ON(scaled_div > scaled_div_max(div));

	return (u32)(scaled_div - ((u64)1 << div->frac_width));
}

/* Return a rate scaled for use when dividing by a scaled divisor. */
static inline u64
scale_rate(struct bcm_clk_div *div, u32 rate)
{
	if (divider_is_fixed(div))
		return (u64)rate;

	return (u64)rate << div->frac_width;
}

/* CCU access */

/* Read a 32-bit register value from a CCU's address space. */
static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
{
	return readl(ccu->base + reg_offset);
}

/* Write a 32-bit register value into a CCU's address space. */
static inline void
__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
{
	writel(reg_val, ccu->base + reg_offset);
}

static inline unsigned long ccu_lock(struct ccu_data *ccu)
{
	unsigned long flags;

	spin_lock_irqsave(&ccu->lock, flags);

	return flags;
}
static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
{
	spin_unlock_irqrestore(&ccu->lock, flags);
}

/*
 * Enable/disable write access to CCU protected registers.  The
 * WR_ACCESS register for all CCUs is at offset 0.
 */
static inline void __ccu_write_enable(struct ccu_data *ccu)
{
	if (ccu->write_enabled) {
		pr_err("%s: access already enabled for %s\n", __func__,
			ccu->name);
		return;
	}
	ccu->write_enabled = true;
	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
}

static inline void __ccu_write_disable(struct ccu_data *ccu)
{
	if (!ccu->write_enabled) {
		pr_err("%s: access wasn't enabled for %s\n", __func__,
			ccu->name);
		return;
	}

	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
	ccu->write_enabled = false;
}

/*
 * Poll a register in a CCU's address space, returning when the
 * specified bit in that register's value is set (or clear).  Delay
 * a microsecond after each read of the register.  Returns true if
 * successful, or false if we gave up trying.
 *
 * Caller must ensure the CCU lock is held.
 */
static inline bool
__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
{
	unsigned int tries;
	u32 bit_mask = 1 << bit;

	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
		u32 val;
		bool bit_val;

		val = __ccu_read(ccu, reg_offset);
		bit_val = (val & bit_mask) != 0;
		if (bit_val == want)
			return true;
		udelay(1);
	}
	return false;
}

/* Gate operations */

/* Determine whether a clock is gated.  CCU lock must be held.  */
static bool
__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	u32 bit_mask;
	u32 reg_val;

	/* If there is no gate we can assume it's enabled. */
	if (!gate_exists(gate))
		return true;

	bit_mask = 1 << gate->status_bit;
	reg_val = __ccu_read(ccu, gate->offset);

	return (reg_val & bit_mask) != 0;
}

/* Determine whether a clock is gated. */
static bool
is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	long flags;
	bool ret;

	/* Avoid taking the lock if we can */
	if (!gate_exists(gate))
		return true;

	flags = ccu_lock(ccu);
	ret = __is_clk_gate_enabled(ccu, gate);
	ccu_unlock(ccu, flags);

	return ret;
}

/*
 * Commit our desired gate state to the hardware.
 * Returns true if successful, false otherwise.
 */
static bool
__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	u32 reg_val;
	u32 mask;
	bool enabled = false;

	BUG_ON(!gate_exists(gate));
	if (!gate_is_sw_controllable(gate))
		return true;		/* Nothing we can change */

	reg_val = __ccu_read(ccu, gate->offset);

	/* For a hardware/software gate, set which is in control */
	if (gate_is_hw_controllable(gate)) {
		mask = (u32)1 << gate->hw_sw_sel_bit;
		if (gate_is_sw_managed(gate))
			reg_val |= mask;
		else
			reg_val &= ~mask;
	}

	/*
	 * If software is in control, enable or disable the gate.
	 * If hardware is, clear the enabled bit for good measure.
	 * If a software controlled gate can't be disabled, we're
	 * required to write a 0 into the enable bit (but the gate
	 * will be enabled).
	 */
	mask = (u32)1 << gate->en_bit;
	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
			!gate_is_no_disable(gate))
		reg_val |= mask;
	else
		reg_val &= ~mask;

	__ccu_write(ccu, gate->offset, reg_val);

	/* For a hardware controlled gate, we're done */
	if (!gate_is_sw_managed(gate))
		return true;

	/* Otherwise wait for the gate to be in desired state */
	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
}

/*
 * Initialize a gate.  Our desired state (hardware/software select,
 * and if software, its enable state) is committed to hardware
 * without the usual checks to see if it's already set up that way.
 * Returns true if successful, false otherwise.
 */
static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
{
	if (!gate_exists(gate))
		return true;
	return __gate_commit(ccu, gate);
}

/*
 * Set a gate to enabled or disabled state.  Does nothing if the
 * gate is not currently under software control, or if it is already
 * in the requested state.  Returns true if successful, false
 * otherwise.  CCU lock must be held.
 */
static bool
__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
{
	bool ret;

	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
		return true;	/* Nothing to do */

	if (!enable && gate_is_no_disable(gate)) {
		pr_warn("%s: invalid gate disable request (ignoring)\n",
			__func__);
		return true;
	}

	if (enable == gate_is_enabled(gate))
		return true;	/* No change */

	gate_flip_enabled(gate);
	ret = __gate_commit(ccu, gate);
	if (!ret)
		gate_flip_enabled(gate);	/* Revert the change */

	return ret;
}

/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
static int clk_gate(struct ccu_data *ccu, const char *name,
			struct bcm_clk_gate *gate, bool enable)
{
	unsigned long flags;
	bool success;

	/*
	 * Avoid taking the lock if we can.  We quietly ignore
	 * requests to change state that don't make sense.
	 */
	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
		return 0;
	if (!enable && gate_is_no_disable(gate))
		return 0;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	success = __clk_gate(ccu, gate, enable);

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);

	if (success)
		return 0;

	pr_err("%s: failed to %s gate for %s\n", __func__,
		enable ? "enable" : "disable", name);

	return -EIO;
}

/* Trigger operations */

/*
 * Caller must ensure CCU lock is held and access is enabled.
 * Returns true if successful, false otherwise.
 */
static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
{
	/* Trigger the clock and wait for it to finish */
	__ccu_write(ccu, trig->offset, 1 << trig->bit);

	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
}

/* Divider operations */

/* Read a divider value and return the scaled divisor it represents. */
static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
{
	unsigned long flags;
	u32 reg_val;
	u32 reg_div;

	if (divider_is_fixed(div))
		return (u64)div->fixed;

	flags = ccu_lock(ccu);
	reg_val = __ccu_read(ccu, div->offset);
	ccu_unlock(ccu, flags);

	/* Extract the full divider field from the register value */
	reg_div = bitfield_extract(reg_val, div->shift, div->width);

	/* Return the scaled divisor value it represents */
	return scaled_div_value(div, reg_div);
}

/*
 * Convert a divider's scaled divisor value into its recorded form
 * and commit it into the hardware divider register.
 *
 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 */
static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
{
	bool enabled;
	u32 reg_div;
	u32 reg_val;
	int ret = 0;

	BUG_ON(divider_is_fixed(div));

	/*
	 * If we're just initializing the divider, and no initial
	 * state was defined in the device tree, we just find out
	 * what its current value is rather than updating it.
	 */
	if (div->scaled_div == BAD_SCALED_DIV_VALUE) {
		reg_val = __ccu_read(ccu, div->offset);
		reg_div = bitfield_extract(reg_val, div->shift, div->width);
		div->scaled_div = scaled_div_value(div, reg_div);

		return 0;
	}

	/* Convert the scaled divisor to the value we need to record */
	reg_div = divider(div, div->scaled_div);

	/* Clock needs to be enabled before changing the rate */
	enabled = __is_clk_gate_enabled(ccu, gate);
	if (!enabled && !__clk_gate(ccu, gate, true)) {
		ret = -ENXIO;
		goto out;
	}

	/* Replace the divider value and record the result */
	reg_val = __ccu_read(ccu, div->offset);
	reg_val = bitfield_replace(reg_val, div->shift, div->width, reg_div);
	__ccu_write(ccu, div->offset, reg_val);

	/* If the trigger fails we still want to disable the gate */
	if (!__clk_trigger(ccu, trig))
		ret = -EIO;

	/* Disable the clock again if it was disabled to begin with */
	if (!enabled && !__clk_gate(ccu, gate, false))
		ret = ret ? ret : -ENXIO;	/* return first error */
out:
	return ret;
}

/*
 * Initialize a divider by committing our desired state to hardware
 * without the usual checks to see if it's already set up that way.
 * Returns true if successful, false otherwise.
 */
static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
{
	if (!divider_exists(div) || divider_is_fixed(div))
		return true;
	return !__div_commit(ccu, gate, div, trig);
}

static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
			u64 scaled_div)
{
	unsigned long flags;
	u64 previous;
	int ret;

	BUG_ON(divider_is_fixed(div));

	previous = div->scaled_div;
	if (previous == scaled_div)
		return 0;	/* No change */

	div->scaled_div = scaled_div;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	ret = __div_commit(ccu, gate, div, trig);

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);

	if (ret)
		div->scaled_div = previous;		/* Revert the change */

	return ret;

}

/* Common clock rate helpers */

/*
 * Implement the common clock framework recalc_rate method, taking
 * into account a divider and an optional pre-divider.  The
 * pre-divider register pointer may be NULL.
 */
static unsigned long clk_recalc_rate(struct ccu_data *ccu,
			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
			unsigned long parent_rate)
{
	u64 scaled_parent_rate;
	u64 scaled_div;
	u64 result;

	if (!divider_exists(div))
		return parent_rate;

	if (parent_rate > (unsigned long)LONG_MAX)
		return 0;	/* actually this would be a caller bug */

	/*
	 * If there is a pre-divider, divide the scaled parent rate
	 * by the pre-divider value first.  In this case--to improve
	 * accuracy--scale the parent rate by *both* the pre-divider
	 * value and the divider before actually computing the
	 * result of the pre-divider.
	 *
	 * If there's only one divider, just scale the parent rate.
	 */
	if (pre_div && divider_exists(pre_div)) {
		u64 scaled_rate;

		scaled_rate = scale_rate(pre_div, parent_rate);
		scaled_rate = scale_rate(div, scaled_rate);
		scaled_div = divider_read_scaled(ccu, pre_div);
		scaled_parent_rate = do_div_round_closest(scaled_rate,
							scaled_div);
	} else  {
		scaled_parent_rate = scale_rate(div, parent_rate);
	}

	/*
	 * Get the scaled divisor value, and divide the scaled
	 * parent rate by that to determine this clock's resulting
	 * rate.
	 */
	scaled_div = divider_read_scaled(ccu, div);
	result = do_div_round_closest(scaled_parent_rate, scaled_div);

	return (unsigned long)result;
}

/*
 * Compute the output rate produced when a given parent rate is fed
 * into two dividers.  The pre-divider can be NULL, and even if it's
 * non-null it may be nonexistent.  It's also OK for the divider to
 * be nonexistent, and in that case the pre-divider is also ignored.
 *
 * If scaled_div is non-null, it is used to return the scaled divisor
 * value used by the (downstream) divider to produce that rate.
 */
static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
				struct bcm_clk_div *pre_div,
				unsigned long rate, unsigned long parent_rate,
				u64 *scaled_div)
{
	u64 scaled_parent_rate;
	u64 min_scaled_div;
	u64 max_scaled_div;
	u64 best_scaled_div;
	u64 result;

	BUG_ON(!divider_exists(div));
	BUG_ON(!rate);
	BUG_ON(parent_rate > (u64)LONG_MAX);

	/*
	 * If there is a pre-divider, divide the scaled parent rate
	 * by the pre-divider value first.  In this case--to improve
	 * accuracy--scale the parent rate by *both* the pre-divider
	 * value and the divider before actually computing the
	 * result of the pre-divider.
	 *
	 * If there's only one divider, just scale the parent rate.
	 *
	 * For simplicity we treat the pre-divider as fixed (for now).
	 */
	if (divider_exists(pre_div)) {
		u64 scaled_rate;
		u64 scaled_pre_div;

		scaled_rate = scale_rate(pre_div, parent_rate);
		scaled_rate = scale_rate(div, scaled_rate);
		scaled_pre_div = divider_read_scaled(ccu, pre_div);
		scaled_parent_rate = do_div_round_closest(scaled_rate,
							scaled_pre_div);
	} else {
		scaled_parent_rate = scale_rate(div, parent_rate);
	}

	/*
	 * Compute the best possible divider and ensure it is in
	 * range.  A fixed divider can't be changed, so just report
	 * the best we can do.
	 */
	if (!divider_is_fixed(div)) {
		best_scaled_div = do_div_round_closest(scaled_parent_rate,
							rate);
		min_scaled_div = scaled_div_min(div);
		max_scaled_div = scaled_div_max(div);
		if (best_scaled_div > max_scaled_div)
			best_scaled_div = max_scaled_div;
		else if (best_scaled_div < min_scaled_div)
			best_scaled_div = min_scaled_div;
	} else {
		best_scaled_div = divider_read_scaled(ccu, div);
	}

	/* OK, figure out the resulting rate */
	result = do_div_round_closest(scaled_parent_rate, best_scaled_div);

	if (scaled_div)
		*scaled_div = best_scaled_div;

	return (long)result;
}

/* Common clock parent helpers */

/*
 * For a given parent selector (register field) value, find the
 * index into a selector's parent_sel array that contains it.
 * Returns the index, or BAD_CLK_INDEX if it's not found.
 */
static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
{
	u8 i;

	BUG_ON(sel->parent_count > (u32)U8_MAX);
	for (i = 0; i < sel->parent_count; i++)
		if (sel->parent_sel[i] == parent_sel)
			return i;
	return BAD_CLK_INDEX;
}

/*
 * Fetch the current value of the selector, and translate that into
 * its corresponding index in the parent array we registered with
 * the clock framework.
 *
 * Returns parent array index that corresponds with the value found,
 * or BAD_CLK_INDEX if the found value is out of range.
 */
static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
{
	unsigned long flags;
	u32 reg_val;
	u32 parent_sel;
	u8 index;

	/* If there's no selector, there's only one parent */
	if (!selector_exists(sel))
		return 0;

	/* Get the value in the selector register */
	flags = ccu_lock(ccu);
	reg_val = __ccu_read(ccu, sel->offset);
	ccu_unlock(ccu, flags);

	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);

	/* Look up that selector's parent array index and return it */
	index = parent_index(sel, parent_sel);
	if (index == BAD_CLK_INDEX)
		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
			__func__, parent_sel, ccu->name, sel->offset);

	return index;
}

/*
 * Commit our desired selector value to the hardware.
 *
 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 */
static int
__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
{
	u32 parent_sel;
	u32 reg_val;
	bool enabled;
	int ret = 0;

	BUG_ON(!selector_exists(sel));

	/*
	 * If we're just initializing the selector, and no initial
	 * state was defined in the device tree, we just find out
	 * what its current value is rather than updating it.
	 */
	if (sel->clk_index == BAD_CLK_INDEX) {
		u8 index;

		reg_val = __ccu_read(ccu, sel->offset);
		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
		index = parent_index(sel, parent_sel);
		if (index == BAD_CLK_INDEX)
			return -EINVAL;
		sel->clk_index = index;

		return 0;
	}

	BUG_ON((u32)sel->clk_index >= sel->parent_count);
	parent_sel = sel->parent_sel[sel->clk_index];

	/* Clock needs to be enabled before changing the parent */
	enabled = __is_clk_gate_enabled(ccu, gate);
	if (!enabled && !__clk_gate(ccu, gate, true))
		return -ENXIO;

	/* Replace the selector value and record the result */
	reg_val = __ccu_read(ccu, sel->offset);
	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
	__ccu_write(ccu, sel->offset, reg_val);

	/* If the trigger fails we still want to disable the gate */
	if (!__clk_trigger(ccu, trig))
		ret = -EIO;

	/* Disable the clock again if it was disabled to begin with */
	if (!enabled && !__clk_gate(ccu, gate, false))
		ret = ret ? ret : -ENXIO;	/* return first error */

	return ret;
}

/*
 * Initialize a selector by committing our desired state to hardware
 * without the usual checks to see if it's already set up that way.
 * Returns true if successful, false otherwise.
 */
static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
{
	if (!selector_exists(sel))
		return true;
	return !__sel_commit(ccu, gate, sel, trig);
}

/*
 * Write a new value into a selector register to switch to a
 * different parent clock.  Returns 0 on success, or an error code
 * (from __sel_commit()) otherwise.
 */
static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
			u8 index)
{
	unsigned long flags;
	u8 previous;
	int ret;

	previous = sel->clk_index;
	if (previous == index)
		return 0;	/* No change */

	sel->clk_index = index;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	ret = __sel_commit(ccu, gate, sel, trig);

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);

	if (ret)
		sel->clk_index = previous;	/* Revert the change */

	return ret;
}

/* Clock operations */

static int kona_peri_clk_enable(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct bcm_clk_gate *gate = &bcm_clk->peri->gate;

	return clk_gate(bcm_clk->ccu, bcm_clk->name, gate, true);
}

static void kona_peri_clk_disable(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct bcm_clk_gate *gate = &bcm_clk->peri->gate;

	(void)clk_gate(bcm_clk->ccu, bcm_clk->name, gate, false);
}

static int kona_peri_clk_is_enabled(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct bcm_clk_gate *gate = &bcm_clk->peri->gate;

	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
}

static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
			unsigned long parent_rate)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct peri_clk_data *data = bcm_clk->peri;

	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
				parent_rate);
}

static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
			unsigned long *parent_rate)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct bcm_clk_div *div = &bcm_clk->peri->div;

	if (!divider_exists(div))
		return __clk_get_rate(hw->clk);

	/* Quietly avoid a zero rate */
	return round_rate(bcm_clk->ccu, div, &bcm_clk->peri->pre_div,
				rate ? rate : 1, *parent_rate, NULL);
}

static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct peri_clk_data *data = bcm_clk->peri;
	struct bcm_clk_sel *sel = &data->sel;
	struct bcm_clk_trig *trig;
	int ret;

	BUG_ON(index >= sel->parent_count);

	/* If there's only one parent we don't require a selector */
	if (!selector_exists(sel))
		return 0;

	/*
	 * The regular trigger is used by default, but if there's a
	 * pre-trigger we want to use that instead.
	 */
	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
					       : &data->trig;

	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
	if (ret == -ENXIO) {
		pr_err("%s: gating failure for %s\n", __func__, bcm_clk->name);
		ret = -EIO;	/* Don't proliferate weird errors */
	} else if (ret == -EIO) {
		pr_err("%s: %strigger failed for %s\n", __func__,
			trig == &data->pre_trig ? "pre-" : "",
			bcm_clk->name);
	}

	return ret;
}

static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct peri_clk_data *data = bcm_clk->peri;
	u8 index;

	index = selector_read_index(bcm_clk->ccu, &data->sel);

	/* Not all callers would handle an out-of-range value gracefully */
	return index == BAD_CLK_INDEX ? 0 : index;
}

static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
			unsigned long parent_rate)
{
	struct kona_clk *bcm_clk = to_kona_clk(hw);
	struct peri_clk_data *data = bcm_clk->peri;
	struct bcm_clk_div *div = &data->div;
	u64 scaled_div = 0;
	int ret;

	if (parent_rate > (unsigned long)LONG_MAX)
		return -EINVAL;

	if (rate == __clk_get_rate(hw->clk))
		return 0;

	if (!divider_exists(div))
		return rate == parent_rate ? 0 : -EINVAL;

	/*
	 * A fixed divider can't be changed.  (Nor can a fixed
	 * pre-divider be, but for now we never actually try to
	 * change that.)  Tolerate a request for a no-op change.
	 */
	if (divider_is_fixed(&data->div))
		return rate == parent_rate ? 0 : -EINVAL;

	/*
	 * Get the scaled divisor value needed to achieve a clock
	 * rate as close as possible to what was requested, given
	 * the parent clock rate supplied.
	 */
	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
				rate ? rate : 1, parent_rate, &scaled_div);

	/*
	 * We aren't updating any pre-divider at this point, so
	 * we'll use the regular trigger.
	 */
	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
				&data->trig, scaled_div);
	if (ret == -ENXIO) {
		pr_err("%s: gating failure for %s\n", __func__, bcm_clk->name);
		ret = -EIO;	/* Don't proliferate weird errors */
	} else if (ret == -EIO) {
		pr_err("%s: trigger failed for %s\n", __func__, bcm_clk->name);
	}

	return ret;
}

struct clk_ops kona_peri_clk_ops = {
	.enable = kona_peri_clk_enable,
	.disable = kona_peri_clk_disable,
	.is_enabled = kona_peri_clk_is_enabled,
	.recalc_rate = kona_peri_clk_recalc_rate,
	.round_rate = kona_peri_clk_round_rate,
	.set_parent = kona_peri_clk_set_parent,
	.get_parent = kona_peri_clk_get_parent,
	.set_rate = kona_peri_clk_set_rate,
};

/* Put a peripheral clock into its initial state */
static bool __peri_clk_init(struct kona_clk *bcm_clk)
{
	struct ccu_data *ccu = bcm_clk->ccu;
	struct peri_clk_data *peri = bcm_clk->peri;
	const char *name = bcm_clk->name;
	struct bcm_clk_trig *trig;

	BUG_ON(bcm_clk->type != bcm_clk_peri);

	if (!gate_init(ccu, &peri->gate)) {
		pr_err("%s: error initializing gate for %s\n", __func__, name);
		return false;
	}
	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
		pr_err("%s: error initializing divider for %s\n", __func__,
			name);
		return false;
	}

	/*
	 * For the pre-divider and selector, the pre-trigger is used
	 * if it's present, otherwise we just use the regular trigger.
	 */
	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
					       : &peri->trig;

	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
		pr_err("%s: error initializing pre-divider for %s\n", __func__,
			name);
		return false;
	}

	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
		pr_err("%s: error initializing selector for %s\n", __func__,
			name);
		return false;
	}

	return true;
}

static bool __kona_clk_init(struct kona_clk *bcm_clk)
{
	switch (bcm_clk->type) {
	case bcm_clk_peri:
		return __peri_clk_init(bcm_clk);
	default:
		BUG();
	}
	return -EINVAL;
}

/* Set a CCU and all its clocks into their desired initial state */
bool __init kona_ccu_init(struct ccu_data *ccu)
{
	unsigned long flags;
	unsigned int which;
	struct clk **clks = ccu->data.clks;
	bool success = true;

	flags = ccu_lock(ccu);
	__ccu_write_enable(ccu);

	for (which = 0; which < ccu->data.clk_num; which++) {
		struct kona_clk *bcm_clk;

		if (!clks[which])
			continue;
		bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
		success &= __kona_clk_init(bcm_clk);
	}

	__ccu_write_disable(ccu);
	ccu_unlock(ccu, flags);
	return success;
}