summaryrefslogtreecommitdiff
path: root/drivers/clk/bcm/clk-bcm2835.c
blob: c74ed3fd496dba5a8d4fa867257ee5030491a3c9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
/*
 * Copyright (C) 2010,2015 Broadcom
 * Copyright (C) 2012 Stephen Warren
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/**
 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
 *
 * The clock tree on the 2835 has several levels.  There's a root
 * oscillator running at 19.2Mhz.  After the oscillator there are 5
 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
 * and "HDMI displays".  Those 5 PLLs each can divide their output to
 * produce up to 4 channels.  Finally, there is the level of clocks to
 * be consumed by other hardware components (like "H264" or "HDMI
 * state machine"), which divide off of some subset of the PLL
 * channels.
 *
 * All of the clocks in the tree are exposed in the DT, because the DT
 * may want to make assignments of the final layer of clocks to the
 * PLL channels, and some components of the hardware will actually
 * skip layers of the tree (for example, the pixel clock comes
 * directly from the PLLH PIX channel without using a CM_*CTL clock
 * generator).
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/bcm2835.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/clock/bcm2835.h>

#define CM_PASSWORD		0x5a000000

#define CM_GNRICCTL		0x000
#define CM_GNRICDIV		0x004
# define CM_DIV_FRAC_BITS	12

#define CM_VPUCTL		0x008
#define CM_VPUDIV		0x00c
#define CM_SYSCTL		0x010
#define CM_SYSDIV		0x014
#define CM_PERIACTL		0x018
#define CM_PERIADIV		0x01c
#define CM_PERIICTL		0x020
#define CM_PERIIDIV		0x024
#define CM_H264CTL		0x028
#define CM_H264DIV		0x02c
#define CM_ISPCTL		0x030
#define CM_ISPDIV		0x034
#define CM_V3DCTL		0x038
#define CM_V3DDIV		0x03c
#define CM_CAM0CTL		0x040
#define CM_CAM0DIV		0x044
#define CM_CAM1CTL		0x048
#define CM_CAM1DIV		0x04c
#define CM_CCP2CTL		0x050
#define CM_CCP2DIV		0x054
#define CM_DSI0ECTL		0x058
#define CM_DSI0EDIV		0x05c
#define CM_DSI0PCTL		0x060
#define CM_DSI0PDIV		0x064
#define CM_DPICTL		0x068
#define CM_DPIDIV		0x06c
#define CM_GP0CTL		0x070
#define CM_GP0DIV		0x074
#define CM_GP1CTL		0x078
#define CM_GP1DIV		0x07c
#define CM_GP2CTL		0x080
#define CM_GP2DIV		0x084
#define CM_HSMCTL		0x088
#define CM_HSMDIV		0x08c
#define CM_OTPCTL		0x090
#define CM_OTPDIV		0x094
#define CM_PCMCTL		0x098
#define CM_PCMDIV		0x09c
#define CM_PWMCTL		0x0a0
#define CM_PWMDIV		0x0a4
#define CM_SLIMCTL		0x0a8
#define CM_SLIMDIV		0x0ac
#define CM_SMICTL		0x0b0
#define CM_SMIDIV		0x0b4
/* no definition for 0x0b8  and 0x0bc */
#define CM_TCNTCTL		0x0c0
#define CM_TCNTDIV		0x0c4
#define CM_TECCTL		0x0c8
#define CM_TECDIV		0x0cc
#define CM_TD0CTL		0x0d0
#define CM_TD0DIV		0x0d4
#define CM_TD1CTL		0x0d8
#define CM_TD1DIV		0x0dc
#define CM_TSENSCTL		0x0e0
#define CM_TSENSDIV		0x0e4
#define CM_TIMERCTL		0x0e8
#define CM_TIMERDIV		0x0ec
#define CM_UARTCTL		0x0f0
#define CM_UARTDIV		0x0f4
#define CM_VECCTL		0x0f8
#define CM_VECDIV		0x0fc
#define CM_PULSECTL		0x190
#define CM_PULSEDIV		0x194
#define CM_SDCCTL		0x1a8
#define CM_SDCDIV		0x1ac
#define CM_ARMCTL		0x1b0
#define CM_EMMCCTL		0x1c0
#define CM_EMMCDIV		0x1c4

/* General bits for the CM_*CTL regs */
# define CM_ENABLE			BIT(4)
# define CM_KILL			BIT(5)
# define CM_GATE_BIT			6
# define CM_GATE			BIT(CM_GATE_BIT)
# define CM_BUSY			BIT(7)
# define CM_BUSYD			BIT(8)
# define CM_SRC_SHIFT			0
# define CM_SRC_BITS			4
# define CM_SRC_MASK			0xf
# define CM_SRC_GND			0
# define CM_SRC_OSC			1
# define CM_SRC_TESTDEBUG0		2
# define CM_SRC_TESTDEBUG1		3
# define CM_SRC_PLLA_CORE		4
# define CM_SRC_PLLA_PER		4
# define CM_SRC_PLLC_CORE0		5
# define CM_SRC_PLLC_PER		5
# define CM_SRC_PLLC_CORE1		8
# define CM_SRC_PLLD_CORE		6
# define CM_SRC_PLLD_PER		6
# define CM_SRC_PLLH_AUX		7
# define CM_SRC_PLLC_CORE1		8
# define CM_SRC_PLLC_CORE2		9

#define CM_OSCCOUNT		0x100

#define CM_PLLA			0x104
# define CM_PLL_ANARST			BIT(8)
# define CM_PLLA_HOLDPER		BIT(7)
# define CM_PLLA_LOADPER		BIT(6)
# define CM_PLLA_HOLDCORE		BIT(5)
# define CM_PLLA_LOADCORE		BIT(4)
# define CM_PLLA_HOLDCCP2		BIT(3)
# define CM_PLLA_LOADCCP2		BIT(2)
# define CM_PLLA_HOLDDSI0		BIT(1)
# define CM_PLLA_LOADDSI0		BIT(0)

#define CM_PLLC			0x108
# define CM_PLLC_HOLDPER		BIT(7)
# define CM_PLLC_LOADPER		BIT(6)
# define CM_PLLC_HOLDCORE2		BIT(5)
# define CM_PLLC_LOADCORE2		BIT(4)
# define CM_PLLC_HOLDCORE1		BIT(3)
# define CM_PLLC_LOADCORE1		BIT(2)
# define CM_PLLC_HOLDCORE0		BIT(1)
# define CM_PLLC_LOADCORE0		BIT(0)

#define CM_PLLD			0x10c
# define CM_PLLD_HOLDPER		BIT(7)
# define CM_PLLD_LOADPER		BIT(6)
# define CM_PLLD_HOLDCORE		BIT(5)
# define CM_PLLD_LOADCORE		BIT(4)
# define CM_PLLD_HOLDDSI1		BIT(3)
# define CM_PLLD_LOADDSI1		BIT(2)
# define CM_PLLD_HOLDDSI0		BIT(1)
# define CM_PLLD_LOADDSI0		BIT(0)

#define CM_PLLH			0x110
# define CM_PLLH_LOADRCAL		BIT(2)
# define CM_PLLH_LOADAUX		BIT(1)
# define CM_PLLH_LOADPIX		BIT(0)

#define CM_LOCK			0x114
# define CM_LOCK_FLOCKH			BIT(12)
# define CM_LOCK_FLOCKD			BIT(11)
# define CM_LOCK_FLOCKC			BIT(10)
# define CM_LOCK_FLOCKB			BIT(9)
# define CM_LOCK_FLOCKA			BIT(8)

#define CM_EVENT		0x118
#define CM_DSI1ECTL		0x158
#define CM_DSI1EDIV		0x15c
#define CM_DSI1PCTL		0x160
#define CM_DSI1PDIV		0x164
#define CM_DFTCTL		0x168
#define CM_DFTDIV		0x16c

#define CM_PLLB			0x170
# define CM_PLLB_HOLDARM		BIT(1)
# define CM_PLLB_LOADARM		BIT(0)

#define A2W_PLLA_CTRL		0x1100
#define A2W_PLLC_CTRL		0x1120
#define A2W_PLLD_CTRL		0x1140
#define A2W_PLLH_CTRL		0x1160
#define A2W_PLLB_CTRL		0x11e0
# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
# define A2W_PLL_CTRL_PWRDN		BIT(16)
# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
# define A2W_PLL_CTRL_PDIV_SHIFT	12
# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
# define A2W_PLL_CTRL_NDIV_SHIFT	0

#define A2W_PLLA_ANA0		0x1010
#define A2W_PLLC_ANA0		0x1030
#define A2W_PLLD_ANA0		0x1050
#define A2W_PLLH_ANA0		0x1070
#define A2W_PLLB_ANA0		0x10f0

#define A2W_PLL_KA_SHIFT	7
#define A2W_PLL_KA_MASK		GENMASK(9, 7)
#define A2W_PLL_KI_SHIFT	19
#define A2W_PLL_KI_MASK		GENMASK(21, 19)
#define A2W_PLL_KP_SHIFT	15
#define A2W_PLL_KP_MASK		GENMASK(18, 15)

#define A2W_PLLH_KA_SHIFT	19
#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
#define A2W_PLLH_KI_LOW_SHIFT	22
#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
#define A2W_PLLH_KI_HIGH_SHIFT	0
#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
#define A2W_PLLH_KP_SHIFT	1
#define A2W_PLLH_KP_MASK	GENMASK(4, 1)

#define A2W_XOSC_CTRL		0x1190
# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)

#define A2W_PLLA_FRAC		0x1200
#define A2W_PLLC_FRAC		0x1220
#define A2W_PLLD_FRAC		0x1240
#define A2W_PLLH_FRAC		0x1260
#define A2W_PLLB_FRAC		0x12e0
# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
# define A2W_PLL_FRAC_BITS		20

#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
#define A2W_PLL_DIV_BITS		8
#define A2W_PLL_DIV_SHIFT		0

#define A2W_PLLA_DSI0		0x1300
#define A2W_PLLA_CORE		0x1400
#define A2W_PLLA_PER		0x1500
#define A2W_PLLA_CCP2		0x1600

#define A2W_PLLC_CORE2		0x1320
#define A2W_PLLC_CORE1		0x1420
#define A2W_PLLC_PER		0x1520
#define A2W_PLLC_CORE0		0x1620

#define A2W_PLLD_DSI0		0x1340
#define A2W_PLLD_CORE		0x1440
#define A2W_PLLD_PER		0x1540
#define A2W_PLLD_DSI1		0x1640

#define A2W_PLLH_AUX		0x1360
#define A2W_PLLH_RCAL		0x1460
#define A2W_PLLH_PIX		0x1560
#define A2W_PLLH_STS		0x1660

#define A2W_PLLH_CTRLR		0x1960
#define A2W_PLLH_FRACR		0x1a60
#define A2W_PLLH_AUXR		0x1b60
#define A2W_PLLH_RCALR		0x1c60
#define A2W_PLLH_PIXR		0x1d60
#define A2W_PLLH_STSR		0x1e60

#define A2W_PLLB_ARM		0x13e0
#define A2W_PLLB_SP0		0x14e0
#define A2W_PLLB_SP1		0x15e0
#define A2W_PLLB_SP2		0x16e0

#define LOCK_TIMEOUT_NS		100000000
#define BCM2835_MAX_FB_RATE	1750000000u

struct bcm2835_cprman {
	struct device *dev;
	void __iomem *regs;
	spinlock_t regs_lock;
	const char *osc_name;

	struct clk_onecell_data onecell;
	struct clk *clks[BCM2835_CLOCK_COUNT];
};

static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
{
	writel(CM_PASSWORD | val, cprman->regs + reg);
}

static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
{
	return readl(cprman->regs + reg);
}

/*
 * These are fixed clocks. They're probably not all root clocks and it may
 * be possible to turn them on and off but until this is mapped out better
 * it's the only way they can be used.
 */
void __init bcm2835_init_clocks(void)
{
	struct clk *clk;
	int ret;

	clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
	if (IS_ERR(clk))
		pr_err("apb_pclk not registered\n");

	clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
	if (IS_ERR(clk))
		pr_err("uart0_pclk not registered\n");
	ret = clk_register_clkdev(clk, NULL, "20201000.uart");
	if (ret)
		pr_err("uart0_pclk alias not registered\n");

	clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
	if (IS_ERR(clk))
		pr_err("uart1_pclk not registered\n");
	ret = clk_register_clkdev(clk, NULL, "20215000.uart");
	if (ret)
		pr_err("uart1_pclk alias not registered\n");
}

struct bcm2835_pll_data {
	const char *name;
	u32 cm_ctrl_reg;
	u32 a2w_ctrl_reg;
	u32 frac_reg;
	u32 ana_reg_base;
	u32 reference_enable_mask;
	/* Bit in CM_LOCK to indicate when the PLL has locked. */
	u32 lock_mask;

	const struct bcm2835_pll_ana_bits *ana;

	unsigned long min_rate;
	unsigned long max_rate;
	/*
	 * Highest rate for the VCO before we have to use the
	 * pre-divide-by-2.
	 */
	unsigned long max_fb_rate;
};

struct bcm2835_pll_ana_bits {
	u32 mask0;
	u32 set0;
	u32 mask1;
	u32 set1;
	u32 mask3;
	u32 set3;
	u32 fb_prediv_mask;
};

static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
	.mask0 = 0,
	.set0 = 0,
	.mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
	.mask3 = ~A2W_PLL_KA_MASK,
	.set3 = (2 << A2W_PLL_KA_SHIFT),
	.fb_prediv_mask = BIT(14),
};

static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
	.mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
	.mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
	.set1 = (6 << A2W_PLLH_KP_SHIFT),
	.mask3 = 0,
	.set3 = 0,
	.fb_prediv_mask = BIT(11),
};

/*
 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
 * Port 2) transmitter clock.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
 */
static const struct bcm2835_pll_data bcm2835_plla_data = {
	.name = "plla",
	.cm_ctrl_reg = CM_PLLA,
	.a2w_ctrl_reg = A2W_PLLA_CTRL,
	.frac_reg = A2W_PLLA_FRAC,
	.ana_reg_base = A2W_PLLA_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
	.lock_mask = CM_LOCK_FLOCKA,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 2400000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/* PLLB is used for the ARM's clock. */
static const struct bcm2835_pll_data bcm2835_pllb_data = {
	.name = "pllb",
	.cm_ctrl_reg = CM_PLLB,
	.a2w_ctrl_reg = A2W_PLLB_CTRL,
	.frac_reg = A2W_PLLB_FRAC,
	.ana_reg_base = A2W_PLLB_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
	.lock_mask = CM_LOCK_FLOCKB,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLC is the core PLL, used to drive the core VPU clock.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
*/
static const struct bcm2835_pll_data bcm2835_pllc_data = {
	.name = "pllc",
	.cm_ctrl_reg = CM_PLLC,
	.a2w_ctrl_reg = A2W_PLLC_CTRL,
	.frac_reg = A2W_PLLC_FRAC,
	.ana_reg_base = A2W_PLLC_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
	.lock_mask = CM_LOCK_FLOCKC,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLD is the display PLL, used to drive DSI display panels.
 *
 * It is in the PX LDO power domain, which is on when the AUDIO domain
 * is on.
 */
static const struct bcm2835_pll_data bcm2835_plld_data = {
	.name = "plld",
	.cm_ctrl_reg = CM_PLLD,
	.a2w_ctrl_reg = A2W_PLLD_CTRL,
	.frac_reg = A2W_PLLD_FRAC,
	.ana_reg_base = A2W_PLLD_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
	.lock_mask = CM_LOCK_FLOCKD,

	.ana = &bcm2835_ana_default,

	.min_rate = 600000000u,
	.max_rate = 2400000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

/*
 * PLLH is used to supply the pixel clock or the AUX clock for the TV
 * encoder.
 *
 * It is in the HDMI power domain.
 */
static const struct bcm2835_pll_data bcm2835_pllh_data = {
	"pllh",
	.cm_ctrl_reg = CM_PLLH,
	.a2w_ctrl_reg = A2W_PLLH_CTRL,
	.frac_reg = A2W_PLLH_FRAC,
	.ana_reg_base = A2W_PLLH_ANA0,
	.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
	.lock_mask = CM_LOCK_FLOCKH,

	.ana = &bcm2835_ana_pllh,

	.min_rate = 600000000u,
	.max_rate = 3000000000u,
	.max_fb_rate = BCM2835_MAX_FB_RATE,
};

struct bcm2835_pll_divider_data {
	const char *name;
	const struct bcm2835_pll_data *source_pll;
	u32 cm_reg;
	u32 a2w_reg;

	u32 load_mask;
	u32 hold_mask;
	u32 fixed_divider;
};

static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
	.name = "plla_core",
	.source_pll = &bcm2835_plla_data,
	.cm_reg = CM_PLLA,
	.a2w_reg = A2W_PLLA_CORE,
	.load_mask = CM_PLLA_LOADCORE,
	.hold_mask = CM_PLLA_HOLDCORE,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
	.name = "plla_per",
	.source_pll = &bcm2835_plla_data,
	.cm_reg = CM_PLLA,
	.a2w_reg = A2W_PLLA_PER,
	.load_mask = CM_PLLA_LOADPER,
	.hold_mask = CM_PLLA_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
	.name = "pllb_arm",
	.source_pll = &bcm2835_pllb_data,
	.cm_reg = CM_PLLB,
	.a2w_reg = A2W_PLLB_ARM,
	.load_mask = CM_PLLB_LOADARM,
	.hold_mask = CM_PLLB_HOLDARM,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
	.name = "pllc_core0",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_CORE0,
	.load_mask = CM_PLLC_LOADCORE0,
	.hold_mask = CM_PLLC_HOLDCORE0,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
	.name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC, A2W_PLLC_CORE1,
	.load_mask = CM_PLLC_LOADCORE1,
	.hold_mask = CM_PLLC_HOLDCORE1,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
	.name = "pllc_core2",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_CORE2,
	.load_mask = CM_PLLC_LOADCORE2,
	.hold_mask = CM_PLLC_HOLDCORE2,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
	.name = "pllc_per",
	.source_pll = &bcm2835_pllc_data,
	.cm_reg = CM_PLLC,
	.a2w_reg = A2W_PLLC_PER,
	.load_mask = CM_PLLC_LOADPER,
	.hold_mask = CM_PLLC_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
	.name = "plld_core",
	.source_pll = &bcm2835_plld_data,
	.cm_reg = CM_PLLD,
	.a2w_reg = A2W_PLLD_CORE,
	.load_mask = CM_PLLD_LOADCORE,
	.hold_mask = CM_PLLD_HOLDCORE,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
	.name = "plld_per",
	.source_pll = &bcm2835_plld_data,
	.cm_reg = CM_PLLD,
	.a2w_reg = A2W_PLLD_PER,
	.load_mask = CM_PLLD_LOADPER,
	.hold_mask = CM_PLLD_HOLDPER,
	.fixed_divider = 1,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
	.name = "pllh_rcal",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_RCAL,
	.load_mask = CM_PLLH_LOADRCAL,
	.hold_mask = 0,
	.fixed_divider = 10,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
	.name = "pllh_aux",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_AUX,
	.load_mask = CM_PLLH_LOADAUX,
	.hold_mask = 0,
	.fixed_divider = 10,
};

static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
	.name = "pllh_pix",
	.source_pll = &bcm2835_pllh_data,
	.cm_reg = CM_PLLH,
	.a2w_reg = A2W_PLLH_PIX,
	.load_mask = CM_PLLH_LOADPIX,
	.hold_mask = 0,
	.fixed_divider = 10,
};

struct bcm2835_clock_data {
	const char *name;

	const char *const *parents;
	int num_mux_parents;

	u32 ctl_reg;
	u32 div_reg;

	/* Number of integer bits in the divider */
	u32 int_bits;
	/* Number of fractional bits in the divider */
	u32 frac_bits;

	bool is_vpu_clock;
};

static const char *const bcm2835_clock_per_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1",
	"plla_per",
	"pllc_per",
	"plld_per",
	"pllh_aux",
};

static const char *const bcm2835_clock_vpu_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1",
	"plla_core",
	"pllc_core0",
	"plld_core",
	"pllh_aux",
	"pllc_core1",
	"pllc_core2",
};

static const char *const bcm2835_clock_osc_parents[] = {
	"gnd",
	"xosc",
	"testdebug0",
	"testdebug1"
};

/*
 * Used for a 1Mhz clock for the system clocksource, and also used by
 * the watchdog timer and the camera pulse generator.
 */
static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
	.name = "timer",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_TIMERCTL,
	.div_reg = CM_TIMERDIV,
	.int_bits = 6,
	.frac_bits = 12,
};

/* One Time Programmable Memory clock.  Maximum 10Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
	.name = "otp",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_OTPCTL,
	.div_reg = CM_OTPDIV,
	.int_bits = 4,
	.frac_bits = 0,
};

/*
 * VPU clock.  This doesn't have an enable bit, since it drives the
 * bus for everything else, and is special so it doesn't need to be
 * gated for rate changes.  It is also known as "clk_audio" in various
 * hardware documentation.
 */
static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
	.name = "vpu",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_VPUCTL,
	.div_reg = CM_VPUDIV,
	.int_bits = 12,
	.frac_bits = 8,
	.is_vpu_clock = true,
};

static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
	.name = "v3d",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_V3DCTL,
	.div_reg = CM_V3DDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
	.name = "isp",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_ISPCTL,
	.div_reg = CM_ISPDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
	.name = "h264",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_H264CTL,
	.div_reg = CM_H264DIV,
	.int_bits = 4,
	.frac_bits = 8,
};

/* TV encoder clock.  Only operating frequency is 108Mhz.  */
static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
	.name = "vec",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_VECCTL,
	.div_reg = CM_VECDIV,
	.int_bits = 4,
	.frac_bits = 0,
};

static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
	.name = "uart",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_UARTCTL,
	.div_reg = CM_UARTDIV,
	.int_bits = 10,
	.frac_bits = 12,
};

/* HDMI state machine */
static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
	.name = "hsm",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_HSMCTL,
	.div_reg = CM_HSMDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

/*
 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL in
 * the SDRAM controller can't be used.
 */
static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
	.name = "sdram",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
	.parents = bcm2835_clock_vpu_parents,
	.ctl_reg = CM_SDCCTL,
	.div_reg = CM_SDCDIV,
	.int_bits = 6,
	.frac_bits = 0,
};

/* Clock for the temperature sensor.  Generally run at 2Mhz, max 5Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
	.name = "tsens",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
	.parents = bcm2835_clock_osc_parents,
	.ctl_reg = CM_TSENSCTL,
	.div_reg = CM_TSENSDIV,
	.int_bits = 5,
	.frac_bits = 0,
};

/* Arasan EMMC clock */
static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
	.name = "emmc",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_EMMCCTL,
	.div_reg = CM_EMMCDIV,
	.int_bits = 4,
	.frac_bits = 8,
};

static const struct bcm2835_clock_data bcm2835_clock_pwm_data = {
	.name = "pwm",
	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
	.parents = bcm2835_clock_per_parents,
	.ctl_reg = CM_PWMCTL,
	.div_reg = CM_PWMDIV,
	.int_bits = 12,
	.frac_bits = 12,
};

struct bcm2835_pll {
	struct clk_hw hw;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_pll_data *data;
};

static int bcm2835_pll_is_on(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;

	return cprman_read(cprman, data->a2w_ctrl_reg) &
		A2W_PLL_CTRL_PRST_DISABLE;
}

static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
					     unsigned long parent_rate,
					     u32 *ndiv, u32 *fdiv)
{
	u64 div;

	div = (u64)rate << A2W_PLL_FRAC_BITS;
	do_div(div, parent_rate);

	*ndiv = div >> A2W_PLL_FRAC_BITS;
	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
}

static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
					   u32 ndiv, u32 fdiv, u32 pdiv)
{
	u64 rate;

	if (pdiv == 0)
		return 0;

	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
	do_div(rate, pdiv);
	return rate >> A2W_PLL_FRAC_BITS;
}

static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long *parent_rate)
{
	u32 ndiv, fdiv;

	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);

	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
}

static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
					  unsigned long parent_rate)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
	u32 ndiv, pdiv, fdiv;
	bool using_prediv;

	if (parent_rate == 0)
		return 0;

	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
		data->ana->fb_prediv_mask;

	if (using_prediv)
		ndiv *= 2;

	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
}

static void bcm2835_pll_off(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;

	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
	cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN);
}

static int bcm2835_pll_on(struct clk_hw *hw)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	ktime_t timeout;

	/* Take the PLL out of reset. */
	cprman_write(cprman, data->cm_ctrl_reg,
		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);

	/* Wait for the PLL to lock. */
	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
		if (ktime_after(ktime_get(), timeout)) {
			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
				clk_hw_get_name(hw));
			return -ETIMEDOUT;
		}

		cpu_relax();
	}

	return 0;
}

static void
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
{
	int i;

	/*
	 * ANA register setup is done as a series of writes to
	 * ANA3-ANA0, in that order.  This lets us write all 4
	 * registers as a single cycle of the serdes interface (taking
	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
	 * 3 individually through their partial-write registers, each
	 * would be their own serdes cycle.
	 */
	for (i = 3; i >= 0; i--)
		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
}

static int bcm2835_pll_set_rate(struct clk_hw *hw,
				unsigned long rate, unsigned long parent_rate)
{
	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
	struct bcm2835_cprman *cprman = pll->cprman;
	const struct bcm2835_pll_data *data = pll->data;
	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
	u32 ndiv, fdiv, a2w_ctl;
	u32 ana[4];
	int i;

	if (rate < data->min_rate || rate > data->max_rate) {
		dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
			clk_hw_get_name(hw), rate,
			data->min_rate, data->max_rate);
		return -EINVAL;
	}

	if (rate > data->max_fb_rate) {
		use_fb_prediv = true;
		rate /= 2;
	} else {
		use_fb_prediv = false;
	}

	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);

	for (i = 3; i >= 0; i--)
		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);

	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;

	ana[0] &= ~data->ana->mask0;
	ana[0] |= data->ana->set0;
	ana[1] &= ~data->ana->mask1;
	ana[1] |= data->ana->set1;
	ana[3] &= ~data->ana->mask3;
	ana[3] |= data->ana->set3;

	if (was_using_prediv && !use_fb_prediv) {
		ana[1] &= ~data->ana->fb_prediv_mask;
		do_ana_setup_first = true;
	} else if (!was_using_prediv && use_fb_prediv) {
		ana[1] |= data->ana->fb_prediv_mask;
		do_ana_setup_first = false;
	} else {
		do_ana_setup_first = true;
	}

	/* Unmask the reference clock from the oscillator. */
	cprman_write(cprman, A2W_XOSC_CTRL,
		     cprman_read(cprman, A2W_XOSC_CTRL) |
		     data->reference_enable_mask);

	if (do_ana_setup_first)
		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);

	/* Set the PLL multiplier from the oscillator. */
	cprman_write(cprman, data->frac_reg, fdiv);

	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);

	if (!do_ana_setup_first)
		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);

	return 0;
}

static const struct clk_ops bcm2835_pll_clk_ops = {
	.is_prepared = bcm2835_pll_is_on,
	.prepare = bcm2835_pll_on,
	.unprepare = bcm2835_pll_off,
	.recalc_rate = bcm2835_pll_get_rate,
	.set_rate = bcm2835_pll_set_rate,
	.round_rate = bcm2835_pll_round_rate,
};

struct bcm2835_pll_divider {
	struct clk_divider div;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_pll_divider_data *data;
};

static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
{
	return container_of(hw, struct bcm2835_pll_divider, div.hw);
}

static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
}

static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
					   unsigned long rate,
					   unsigned long *parent_rate)
{
	return clk_divider_ops.round_rate(hw, rate, parent_rate);
}

static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	return clk_divider_ops.recalc_rate(hw, parent_rate);
}

static void bcm2835_pll_divider_off(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	cprman_write(cprman, data->cm_reg,
		     (cprman_read(cprman, data->cm_reg) &
		      ~data->load_mask) | data->hold_mask);
	cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
}

static int bcm2835_pll_divider_on(struct clk_hw *hw)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;

	cprman_write(cprman, data->a2w_reg,
		     cprman_read(cprman, data->a2w_reg) &
		     ~A2W_PLL_CHANNEL_DISABLE);

	cprman_write(cprman, data->cm_reg,
		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);

	return 0;
}

static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
					unsigned long rate,
					unsigned long parent_rate)
{
	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
	struct bcm2835_cprman *cprman = divider->cprman;
	const struct bcm2835_pll_divider_data *data = divider->data;
	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;

	div = DIV_ROUND_UP_ULL(parent_rate, rate);

	div = min(div, max_div);
	if (div == max_div)
		div = 0;

	cprman_write(cprman, data->a2w_reg, div);
	cm = cprman_read(cprman, data->cm_reg);
	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);

	return 0;
}

static const struct clk_ops bcm2835_pll_divider_clk_ops = {
	.is_prepared = bcm2835_pll_divider_is_on,
	.prepare = bcm2835_pll_divider_on,
	.unprepare = bcm2835_pll_divider_off,
	.recalc_rate = bcm2835_pll_divider_get_rate,
	.set_rate = bcm2835_pll_divider_set_rate,
	.round_rate = bcm2835_pll_divider_round_rate,
};

/*
 * The CM dividers do fixed-point division, so we can't use the
 * generic integer divider code like the PLL dividers do (and we can't
 * fake it by having some fixed shifts preceding it in the clock tree,
 * because we'd run out of bits in a 32-bit unsigned long).
 */
struct bcm2835_clock {
	struct clk_hw hw;
	struct bcm2835_cprman *cprman;
	const struct bcm2835_clock_data *data;
};

static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
{
	return container_of(hw, struct bcm2835_clock, hw);
}

static int bcm2835_clock_is_on(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
}

static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
				    unsigned long rate,
				    unsigned long parent_rate,
				    bool round_up)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	const struct bcm2835_clock_data *data = clock->data;
	u32 unused_frac_mask =
		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
	u64 rem;
	u32 div;

	rem = do_div(temp, rate);
	div = temp;

	/* Round up and mask off the unused bits */
	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
		div += unused_frac_mask + 1;
	div &= ~unused_frac_mask;

	/* Clamp to the limits. */
	div = max(div, unused_frac_mask + 1);
	div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
				      CM_DIV_FRAC_BITS - data->frac_bits));

	return div;
}

static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
					    unsigned long parent_rate,
					    u32 div)
{
	const struct bcm2835_clock_data *data = clock->data;
	u64 temp;

	/*
	 * The divisor is a 12.12 fixed point field, but only some of
	 * the bits are populated in any given clock.
	 */
	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
	div &= (1 << (data->int_bits + data->frac_bits)) - 1;

	if (div == 0)
		return 0;

	temp = (u64)parent_rate << data->frac_bits;

	do_div(temp, div);

	return temp;
}

static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
					    unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 div = cprman_read(cprman, data->div_reg);

	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
}

static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
{
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);

	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
		if (ktime_after(ktime_get(), timeout)) {
			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
				clk_hw_get_name(&clock->hw));
			return;
		}
		cpu_relax();
	}
}

static void bcm2835_clock_off(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->ctl_reg,
		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
	spin_unlock(&cprman->regs_lock);

	/* BUSY will remain high until the divider completes its cycle. */
	bcm2835_clock_wait_busy(clock);
}

static int bcm2835_clock_on(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;

	spin_lock(&cprman->regs_lock);
	cprman_write(cprman, data->ctl_reg,
		     cprman_read(cprman, data->ctl_reg) |
		     CM_ENABLE |
		     CM_GATE);
	spin_unlock(&cprman->regs_lock);

	return 0;
}

static int bcm2835_clock_set_rate(struct clk_hw *hw,
				  unsigned long rate, unsigned long parent_rate)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);

	cprman_write(cprman, data->div_reg, div);

	return 0;
}

static int bcm2835_clock_determine_rate(struct clk_hw *hw,
		struct clk_rate_request *req)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct clk_hw *parent, *best_parent = NULL;
	unsigned long rate, best_rate = 0;
	unsigned long prate, best_prate = 0;
	size_t i;
	u32 div;

	/*
	 * Select parent clock that results in the closest but lower rate
	 */
	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
		parent = clk_hw_get_parent_by_index(hw, i);
		if (!parent)
			continue;
		prate = clk_hw_get_rate(parent);
		div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
		rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
		if (rate > best_rate && rate <= req->rate) {
			best_parent = parent;
			best_prate = prate;
			best_rate = rate;
		}
	}

	if (!best_parent)
		return -EINVAL;

	req->best_parent_hw = best_parent;
	req->best_parent_rate = best_prate;

	req->rate = best_rate;

	return 0;
}

static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;

	cprman_write(cprman, data->ctl_reg, src);
	return 0;
}

static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
{
	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
	struct bcm2835_cprman *cprman = clock->cprman;
	const struct bcm2835_clock_data *data = clock->data;
	u32 src = cprman_read(cprman, data->ctl_reg);

	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
}


static const struct clk_ops bcm2835_clock_clk_ops = {
	.is_prepared = bcm2835_clock_is_on,
	.prepare = bcm2835_clock_on,
	.unprepare = bcm2835_clock_off,
	.recalc_rate = bcm2835_clock_get_rate,
	.set_rate = bcm2835_clock_set_rate,
	.determine_rate = bcm2835_clock_determine_rate,
	.set_parent = bcm2835_clock_set_parent,
	.get_parent = bcm2835_clock_get_parent,
};

static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
{
	return true;
}

/*
 * The VPU clock can never be disabled (it doesn't have an ENABLE
 * bit), so it gets its own set of clock ops.
 */
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
	.is_prepared = bcm2835_vpu_clock_is_on,
	.recalc_rate = bcm2835_clock_get_rate,
	.set_rate = bcm2835_clock_set_rate,
	.determine_rate = bcm2835_clock_determine_rate,
	.set_parent = bcm2835_clock_set_parent,
	.get_parent = bcm2835_clock_get_parent,
};

static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
					const struct bcm2835_pll_data *data)
{
	struct bcm2835_pll *pll;
	struct clk_init_data init;

	memset(&init, 0, sizeof(init));

	/* All of the PLLs derive from the external oscillator. */
	init.parent_names = &cprman->osc_name;
	init.num_parents = 1;
	init.name = data->name;
	init.ops = &bcm2835_pll_clk_ops;
	init.flags = CLK_IGNORE_UNUSED;

	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
	if (!pll)
		return NULL;

	pll->cprman = cprman;
	pll->data = data;
	pll->hw.init = &init;

	return devm_clk_register(cprman->dev, &pll->hw);
}

static struct clk *
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
			     const struct bcm2835_pll_divider_data *data)
{
	struct bcm2835_pll_divider *divider;
	struct clk_init_data init;
	struct clk *clk;
	const char *divider_name;

	if (data->fixed_divider != 1) {
		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
					      "%s_prediv", data->name);
		if (!divider_name)
			return NULL;
	} else {
		divider_name = data->name;
	}

	memset(&init, 0, sizeof(init));

	init.parent_names = &data->source_pll->name;
	init.num_parents = 1;
	init.name = divider_name;
	init.ops = &bcm2835_pll_divider_clk_ops;
	init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;

	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
	if (!divider)
		return NULL;

	divider->div.reg = cprman->regs + data->a2w_reg;
	divider->div.shift = A2W_PLL_DIV_SHIFT;
	divider->div.width = A2W_PLL_DIV_BITS;
	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
	divider->div.lock = &cprman->regs_lock;
	divider->div.hw.init = &init;
	divider->div.table = NULL;

	divider->cprman = cprman;
	divider->data = data;

	clk = devm_clk_register(cprman->dev, &divider->div.hw);
	if (IS_ERR(clk))
		return clk;

	/*
	 * PLLH's channels have a fixed divide by 10 afterwards, which
	 * is what our consumers are actually using.
	 */
	if (data->fixed_divider != 1) {
		return clk_register_fixed_factor(cprman->dev, data->name,
						 divider_name,
						 CLK_SET_RATE_PARENT,
						 1,
						 data->fixed_divider);
	}

	return clk;
}

static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
					  const struct bcm2835_clock_data *data)
{
	struct bcm2835_clock *clock;
	struct clk_init_data init;
	const char *parents[1 << CM_SRC_BITS];
	size_t i;

	/*
	 * Replace our "xosc" references with the oscillator's
	 * actual name.
	 */
	for (i = 0; i < data->num_mux_parents; i++) {
		if (strcmp(data->parents[i], "xosc") == 0)
			parents[i] = cprman->osc_name;
		else
			parents[i] = data->parents[i];
	}

	memset(&init, 0, sizeof(init));
	init.parent_names = parents;
	init.num_parents = data->num_mux_parents;
	init.name = data->name;
	init.flags = CLK_IGNORE_UNUSED;

	if (data->is_vpu_clock) {
		init.ops = &bcm2835_vpu_clock_clk_ops;
	} else {
		init.ops = &bcm2835_clock_clk_ops;
		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
	}

	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
	if (!clock)
		return NULL;

	clock->cprman = cprman;
	clock->data = data;
	clock->hw.init = &init;

	return devm_clk_register(cprman->dev, &clock->hw);
}

static int bcm2835_clk_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct clk **clks;
	struct bcm2835_cprman *cprman;
	struct resource *res;

	cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
	if (!cprman)
		return -ENOMEM;

	spin_lock_init(&cprman->regs_lock);
	cprman->dev = dev;
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cprman->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(cprman->regs))
		return PTR_ERR(cprman->regs);

	cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
	if (!cprman->osc_name)
		return -ENODEV;

	platform_set_drvdata(pdev, cprman);

	cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
	cprman->onecell.clks = cprman->clks;
	clks = cprman->clks;

	clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
	clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
	clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
	clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
	clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);

	clks[BCM2835_PLLA_CORE] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
	clks[BCM2835_PLLA_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
	clks[BCM2835_PLLC_CORE0] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
	clks[BCM2835_PLLC_CORE1] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
	clks[BCM2835_PLLC_CORE2] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
	clks[BCM2835_PLLC_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
	clks[BCM2835_PLLD_CORE] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
	clks[BCM2835_PLLD_PER] =
		bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
	clks[BCM2835_PLLH_RCAL] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
	clks[BCM2835_PLLH_AUX] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
	clks[BCM2835_PLLH_PIX] =
		bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);

	clks[BCM2835_CLOCK_TIMER] =
		bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
	clks[BCM2835_CLOCK_OTP] =
		bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
	clks[BCM2835_CLOCK_TSENS] =
		bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
	clks[BCM2835_CLOCK_VPU] =
		bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
	clks[BCM2835_CLOCK_V3D] =
		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
	clks[BCM2835_CLOCK_ISP] =
		bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
	clks[BCM2835_CLOCK_H264] =
		bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
	clks[BCM2835_CLOCK_V3D] =
		bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
	clks[BCM2835_CLOCK_SDRAM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
	clks[BCM2835_CLOCK_UART] =
		bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
	clks[BCM2835_CLOCK_VEC] =
		bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
	clks[BCM2835_CLOCK_HSM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
	clks[BCM2835_CLOCK_EMMC] =
		bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);

	/*
	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
	 * you have the debug bit set in the power manager, which we
	 * don't bother exposing) are individual gates off of the
	 * non-stop vpu clock.
	 */
	clks[BCM2835_CLOCK_PERI_IMAGE] =
		clk_register_gate(dev, "peri_image", "vpu",
				  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
				  cprman->regs + CM_PERIICTL, CM_GATE_BIT,
				  0, &cprman->regs_lock);

	clks[BCM2835_CLOCK_PWM] =
		bcm2835_register_clock(cprman, &bcm2835_clock_pwm_data);

	return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
				   &cprman->onecell);
}

static const struct of_device_id bcm2835_clk_of_match[] = {
	{ .compatible = "brcm,bcm2835-cprman", },
	{}
};
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);

static struct platform_driver bcm2835_clk_driver = {
	.driver = {
		.name = "bcm2835-clk",
		.of_match_table = bcm2835_clk_of_match,
	},
	.probe          = bcm2835_clk_probe,
};

builtin_platform_driver(bcm2835_clk_driver);

MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
MODULE_DESCRIPTION("BCM2835 clock driver");
MODULE_LICENSE("GPL v2");