summaryrefslogtreecommitdiff
path: root/drivers/base/dma-coherent.c
blob: 55b83983a9c00c8b5984c887a0435ffb6e03fe1d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
 * Coherent per-device memory handling.
 * Borrowed from i386
 */
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>

struct dma_coherent_mem {
	void		*virt_base;
	dma_addr_t	device_base;
	unsigned long	pfn_base;
	int		size;
	int		flags;
	unsigned long	*bitmap;
	spinlock_t	spinlock;
};

static int dma_init_coherent_memory(phys_addr_t phys_addr, dma_addr_t device_addr,
			     size_t size, int flags,
			     struct dma_coherent_mem **mem)
{
	struct dma_coherent_mem *dma_mem = NULL;
	void __iomem *mem_base = NULL;
	int pages = size >> PAGE_SHIFT;
	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);

	if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
		goto out;
	if (!size)
		goto out;

	mem_base = ioremap(phys_addr, size);
	if (!mem_base)
		goto out;

	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
	if (!dma_mem)
		goto out;
	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!dma_mem->bitmap)
		goto out;

	dma_mem->virt_base = mem_base;
	dma_mem->device_base = device_addr;
	dma_mem->pfn_base = PFN_DOWN(phys_addr);
	dma_mem->size = pages;
	dma_mem->flags = flags;
	spin_lock_init(&dma_mem->spinlock);

	*mem = dma_mem;

	if (flags & DMA_MEMORY_MAP)
		return DMA_MEMORY_MAP;

	return DMA_MEMORY_IO;

out:
	kfree(dma_mem);
	if (mem_base)
		iounmap(mem_base);
	return 0;
}

static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
{
	if (!mem)
		return;
	iounmap(mem->virt_base);
	kfree(mem->bitmap);
	kfree(mem);
}

static int dma_assign_coherent_memory(struct device *dev,
				      struct dma_coherent_mem *mem)
{
	if (dev->dma_mem)
		return -EBUSY;

	dev->dma_mem = mem;
	/* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */

	return 0;
}

int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
				dma_addr_t device_addr, size_t size, int flags)
{
	struct dma_coherent_mem *mem;
	int ret;

	ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags,
				       &mem);
	if (ret == 0)
		return 0;

	if (dma_assign_coherent_memory(dev, mem) == 0)
		return ret;

	dma_release_coherent_memory(mem);
	return 0;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);

void dma_release_declared_memory(struct device *dev)
{
	struct dma_coherent_mem *mem = dev->dma_mem;

	if (!mem)
		return;
	dma_release_coherent_memory(mem);
	dev->dma_mem = NULL;
}
EXPORT_SYMBOL(dma_release_declared_memory);

void *dma_mark_declared_memory_occupied(struct device *dev,
					dma_addr_t device_addr, size_t size)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	unsigned long flags;
	int pos, err;

	size += device_addr & ~PAGE_MASK;

	if (!mem)
		return ERR_PTR(-EINVAL);

	spin_lock_irqsave(&mem->spinlock, flags);
	pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
	err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
	spin_unlock_irqrestore(&mem->spinlock, flags);

	if (err != 0)
		return ERR_PTR(err);
	return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);

/**
 * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area
 *
 * @dev:	device from which we allocate memory
 * @size:	size of requested memory area
 * @dma_handle:	This will be filled with the correct dma handle
 * @ret:	This pointer will be filled with the virtual address
 *		to allocated area.
 *
 * This function should be only called from per-arch dma_alloc_coherent()
 * to support allocation from per-device coherent memory pools.
 *
 * Returns 0 if dma_alloc_coherent should continue with allocating from
 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
 */
int dma_alloc_from_coherent(struct device *dev, ssize_t size,
				       dma_addr_t *dma_handle, void **ret)
{
	struct dma_coherent_mem *mem;
	int order = get_order(size);
	unsigned long flags;
	int pageno;

	if (!dev)
		return 0;
	mem = dev->dma_mem;
	if (!mem)
		return 0;

	*ret = NULL;
	spin_lock_irqsave(&mem->spinlock, flags);

	if (unlikely(size > (mem->size << PAGE_SHIFT)))
		goto err;

	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
	if (unlikely(pageno < 0))
		goto err;

	/*
	 * Memory was found in the per-device area.
	 */
	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
	*ret = mem->virt_base + (pageno << PAGE_SHIFT);
	memset(*ret, 0, size);
	spin_unlock_irqrestore(&mem->spinlock, flags);

	return 1;

err:
	spin_unlock_irqrestore(&mem->spinlock, flags);
	/*
	 * In the case where the allocation can not be satisfied from the
	 * per-device area, try to fall back to generic memory if the
	 * constraints allow it.
	 */
	return mem->flags & DMA_MEMORY_EXCLUSIVE;
}
EXPORT_SYMBOL(dma_alloc_from_coherent);

/**
 * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool
 * @dev:	device from which the memory was allocated
 * @order:	the order of pages allocated
 * @vaddr:	virtual address of allocated pages
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, releases that memory.
 *
 * Returns 1 if we correctly released the memory, or 0 if
 * dma_release_coherent() should proceed with releasing memory from
 * generic pools.
 */
int dma_release_from_coherent(struct device *dev, int order, void *vaddr)
{
	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;

	if (mem && vaddr >= mem->virt_base && vaddr <
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		unsigned long flags;

		spin_lock_irqsave(&mem->spinlock, flags);
		bitmap_release_region(mem->bitmap, page, order);
		spin_unlock_irqrestore(&mem->spinlock, flags);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(dma_release_from_coherent);

/**
 * dma_mmap_from_coherent() - try to mmap the memory allocated from
 * per-device coherent memory pool to userspace
 * @dev:	device from which the memory was allocated
 * @vma:	vm_area for the userspace memory
 * @vaddr:	cpu address returned by dma_alloc_from_coherent
 * @size:	size of the memory buffer allocated by dma_alloc_from_coherent
 * @ret:	result from remap_pfn_range()
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, maps that memory to the provided vma.
 *
 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
 * proceed with mapping memory from generic pools.
 */
int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
			   void *vaddr, size_t size, int *ret)
{
	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;

	if (mem && vaddr >= mem->virt_base && vaddr + size <=
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		unsigned long off = vma->vm_pgoff;
		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		int user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
		int count = size >> PAGE_SHIFT;

		*ret = -ENXIO;
		if (off < count && user_count <= count - off) {
			unsigned long pfn = mem->pfn_base + start + off;
			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
					       user_count << PAGE_SHIFT,
					       vma->vm_page_prot);
		}
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(dma_mmap_from_coherent);

/*
 * Support for reserved memory regions defined in device tree
 */
#ifdef CONFIG_OF_RESERVED_MEM
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>

static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
{
	struct dma_coherent_mem *mem = rmem->priv;

	if (!mem &&
	    dma_init_coherent_memory(rmem->base, rmem->base, rmem->size,
				     DMA_MEMORY_MAP | DMA_MEMORY_EXCLUSIVE,
				     &mem) != DMA_MEMORY_MAP) {
		pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
			&rmem->base, (unsigned long)rmem->size / SZ_1M);
		return -ENODEV;
	}
	rmem->priv = mem;
	dma_assign_coherent_memory(dev, mem);
	return 0;
}

static void rmem_dma_device_release(struct reserved_mem *rmem,
				    struct device *dev)
{
	dev->dma_mem = NULL;
}

static const struct reserved_mem_ops rmem_dma_ops = {
	.device_init	= rmem_dma_device_init,
	.device_release	= rmem_dma_device_release,
};

static int __init rmem_dma_setup(struct reserved_mem *rmem)
{
	unsigned long node = rmem->fdt_node;

	if (of_get_flat_dt_prop(node, "reusable", NULL))
		return -EINVAL;

#ifdef CONFIG_ARM
	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
		pr_err("Reserved memory: regions without no-map are not yet supported\n");
		return -EINVAL;
	}
#endif

	rmem->ops = &rmem_dma_ops;
	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
		&rmem->base, (unsigned long)rmem->size / SZ_1M);
	return 0;
}
RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
#endif