summaryrefslogtreecommitdiff
path: root/block/keyslot-manager.c
blob: 2c4a55bea6ca1e6a4edfbc49154e0f9f52bf86b1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2019 Google LLC
 */

/**
 * DOC: The Keyslot Manager
 *
 * Many devices with inline encryption support have a limited number of "slots"
 * into which encryption contexts may be programmed, and requests can be tagged
 * with a slot number to specify the key to use for en/decryption.
 *
 * As the number of slots is limited, and programming keys is expensive on
 * many inline encryption hardware, we don't want to program the same key into
 * multiple slots - if multiple requests are using the same key, we want to
 * program just one slot with that key and use that slot for all requests.
 *
 * The keyslot manager manages these keyslots appropriately, and also acts as
 * an abstraction between the inline encryption hardware and the upper layers.
 *
 * Lower layer devices will set up a keyslot manager in their request queue
 * and tell it how to perform device specific operations like programming/
 * evicting keys from keyslots.
 *
 * Upper layers will call blk_ksm_get_slot_for_key() to program a
 * key into some slot in the inline encryption hardware.
 */

#define pr_fmt(fmt) "blk-crypto: " fmt

#include <linux/keyslot-manager.h>
#include <linux/device.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/wait.h>
#include <linux/blkdev.h>

struct blk_ksm_keyslot {
	atomic_t slot_refs;
	struct list_head idle_slot_node;
	struct hlist_node hash_node;
	const struct blk_crypto_key *key;
	struct blk_keyslot_manager *ksm;
};

static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
{
	/*
	 * Calling into the driver requires ksm->lock held and the device
	 * resumed.  But we must resume the device first, since that can acquire
	 * and release ksm->lock via blk_ksm_reprogram_all_keys().
	 */
	if (ksm->dev)
		pm_runtime_get_sync(ksm->dev);
	down_write(&ksm->lock);
}

static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
{
	up_write(&ksm->lock);
	if (ksm->dev)
		pm_runtime_put_sync(ksm->dev);
}

static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
{
	return ksm->num_slots == 0;
}

/**
 * blk_ksm_init() - Initialize a keyslot manager
 * @ksm: The keyslot_manager to initialize.
 * @num_slots: The number of key slots to manage.
 *
 * Allocate memory for keyslots and initialize a keyslot manager. Called by
 * e.g. storage drivers to set up a keyslot manager in their request_queue.
 *
 * Return: 0 on success, or else a negative error code.
 */
int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
{
	unsigned int slot;
	unsigned int i;
	unsigned int slot_hashtable_size;

	memset(ksm, 0, sizeof(*ksm));

	if (num_slots == 0)
		return -EINVAL;

	ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
	if (!ksm->slots)
		return -ENOMEM;

	ksm->num_slots = num_slots;

	init_rwsem(&ksm->lock);

	init_waitqueue_head(&ksm->idle_slots_wait_queue);
	INIT_LIST_HEAD(&ksm->idle_slots);

	for (slot = 0; slot < num_slots; slot++) {
		ksm->slots[slot].ksm = ksm;
		list_add_tail(&ksm->slots[slot].idle_slot_node,
			      &ksm->idle_slots);
	}

	spin_lock_init(&ksm->idle_slots_lock);

	slot_hashtable_size = roundup_pow_of_two(num_slots);
	/*
	 * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
	 * buckets.  This only makes a difference when there is only 1 keyslot.
	 */
	if (slot_hashtable_size < 2)
		slot_hashtable_size = 2;

	ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
	ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
					     sizeof(ksm->slot_hashtable[0]),
					     GFP_KERNEL);
	if (!ksm->slot_hashtable)
		goto err_destroy_ksm;
	for (i = 0; i < slot_hashtable_size; i++)
		INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);

	return 0;

err_destroy_ksm:
	blk_ksm_destroy(ksm);
	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_ksm_init);

static void blk_ksm_destroy_callback(void *ksm)
{
	blk_ksm_destroy(ksm);
}

/**
 * devm_blk_ksm_init() - Resource-managed blk_ksm_init()
 * @dev: The device which owns the blk_keyslot_manager.
 * @ksm: The blk_keyslot_manager to initialize.
 * @num_slots: The number of key slots to manage.
 *
 * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
 * on driver detach.
 *
 * Return: 0 on success, or else a negative error code.
 */
int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
		      unsigned int num_slots)
{
	int err = blk_ksm_init(ksm, num_slots);

	if (err)
		return err;

	return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
}
EXPORT_SYMBOL_GPL(devm_blk_ksm_init);

static inline struct hlist_head *
blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
			    const struct blk_crypto_key *key)
{
	return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
}

static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
{
	struct blk_keyslot_manager *ksm = slot->ksm;
	unsigned long flags;

	spin_lock_irqsave(&ksm->idle_slots_lock, flags);
	list_del(&slot->idle_slot_node);
	spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
}

static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
					struct blk_keyslot_manager *ksm,
					const struct blk_crypto_key *key)
{
	const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
	struct blk_ksm_keyslot *slotp;

	hlist_for_each_entry(slotp, head, hash_node) {
		if (slotp->key == key)
			return slotp;
	}
	return NULL;
}

static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
					struct blk_keyslot_manager *ksm,
					const struct blk_crypto_key *key)
{
	struct blk_ksm_keyslot *slot;

	slot = blk_ksm_find_keyslot(ksm, key);
	if (!slot)
		return NULL;
	if (atomic_inc_return(&slot->slot_refs) == 1) {
		/* Took first reference to this slot; remove it from LRU list */
		blk_ksm_remove_slot_from_lru_list(slot);
	}
	return slot;
}

unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
{
	return slot - slot->ksm->slots;
}
EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);

/**
 * blk_ksm_get_slot_for_key() - Program a key into a keyslot.
 * @ksm: The keyslot manager to program the key into.
 * @key: Pointer to the key object to program, including the raw key, crypto
 *	 mode, and data unit size.
 * @slot_ptr: A pointer to return the pointer of the allocated keyslot.
 *
 * Get a keyslot that's been programmed with the specified key.  If one already
 * exists, return it with incremented refcount.  Otherwise, wait for a keyslot
 * to become idle and program it.
 *
 * Context: Process context. Takes and releases ksm->lock.
 * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
 *	   allocated keyslot), or some other blk_status_t otherwise (and
 *	   keyslot is set to NULL).
 */
blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
				      const struct blk_crypto_key *key,
				      struct blk_ksm_keyslot **slot_ptr)
{
	struct blk_ksm_keyslot *slot;
	int slot_idx;
	int err;

	*slot_ptr = NULL;

	if (blk_ksm_is_passthrough(ksm))
		return BLK_STS_OK;

	down_read(&ksm->lock);
	slot = blk_ksm_find_and_grab_keyslot(ksm, key);
	up_read(&ksm->lock);
	if (slot)
		goto success;

	for (;;) {
		blk_ksm_hw_enter(ksm);
		slot = blk_ksm_find_and_grab_keyslot(ksm, key);
		if (slot) {
			blk_ksm_hw_exit(ksm);
			goto success;
		}

		/*
		 * If we're here, that means there wasn't a slot that was
		 * already programmed with the key. So try to program it.
		 */
		if (!list_empty(&ksm->idle_slots))
			break;

		blk_ksm_hw_exit(ksm);
		wait_event(ksm->idle_slots_wait_queue,
			   !list_empty(&ksm->idle_slots));
	}

	slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
				idle_slot_node);
	slot_idx = blk_ksm_get_slot_idx(slot);

	err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
	if (err) {
		wake_up(&ksm->idle_slots_wait_queue);
		blk_ksm_hw_exit(ksm);
		return errno_to_blk_status(err);
	}

	/* Move this slot to the hash list for the new key. */
	if (slot->key)
		hlist_del(&slot->hash_node);
	slot->key = key;
	hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));

	atomic_set(&slot->slot_refs, 1);

	blk_ksm_remove_slot_from_lru_list(slot);

	blk_ksm_hw_exit(ksm);
success:
	*slot_ptr = slot;
	return BLK_STS_OK;
}

/**
 * blk_ksm_put_slot() - Release a reference to a slot
 * @slot: The keyslot to release the reference of.
 *
 * Context: Any context.
 */
void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
{
	struct blk_keyslot_manager *ksm;
	unsigned long flags;

	if (!slot)
		return;

	ksm = slot->ksm;

	if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
					&ksm->idle_slots_lock, flags)) {
		list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
		spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
		wake_up(&ksm->idle_slots_wait_queue);
	}
}

/**
 * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
 *				    supported by a ksm.
 * @ksm: The keyslot manager to check
 * @cfg: The crypto configuration to check for.
 *
 * Checks for crypto_mode/data unit size/dun bytes support.
 *
 * Return: Whether or not this ksm supports the specified crypto config.
 */
bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
				  const struct blk_crypto_config *cfg)
{
	if (!ksm)
		return false;
	if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
	      cfg->data_unit_size))
		return false;
	if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
		return false;
	return true;
}

/**
 * blk_ksm_evict_key() - Evict a key from the lower layer device.
 * @ksm: The keyslot manager to evict from
 * @key: The key to evict
 *
 * Find the keyslot that the specified key was programmed into, and evict that
 * slot from the lower layer device. The slot must not be in use by any
 * in-flight IO when this function is called.
 *
 * Context: Process context. Takes and releases ksm->lock.
 * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
 *	   if the keyslot is still in use, or another -errno value on other
 *	   error.
 */
int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
		      const struct blk_crypto_key *key)
{
	struct blk_ksm_keyslot *slot;
	int err = 0;

	if (blk_ksm_is_passthrough(ksm)) {
		if (ksm->ksm_ll_ops.keyslot_evict) {
			blk_ksm_hw_enter(ksm);
			err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
			blk_ksm_hw_exit(ksm);
			return err;
		}
		return 0;
	}

	blk_ksm_hw_enter(ksm);
	slot = blk_ksm_find_keyslot(ksm, key);
	if (!slot)
		goto out_unlock;

	if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
		err = -EBUSY;
		goto out_unlock;
	}
	err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
					    blk_ksm_get_slot_idx(slot));
	if (err)
		goto out_unlock;

	hlist_del(&slot->hash_node);
	slot->key = NULL;
	err = 0;
out_unlock:
	blk_ksm_hw_exit(ksm);
	return err;
}

/**
 * blk_ksm_reprogram_all_keys() - Re-program all keyslots.
 * @ksm: The keyslot manager
 *
 * Re-program all keyslots that are supposed to have a key programmed.  This is
 * intended only for use by drivers for hardware that loses its keys on reset.
 *
 * Context: Process context. Takes and releases ksm->lock.
 */
void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
{
	unsigned int slot;

	if (blk_ksm_is_passthrough(ksm))
		return;

	/* This is for device initialization, so don't resume the device */
	down_write(&ksm->lock);
	for (slot = 0; slot < ksm->num_slots; slot++) {
		const struct blk_crypto_key *key = ksm->slots[slot].key;
		int err;

		if (!key)
			continue;

		err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
		WARN_ON(err);
	}
	up_write(&ksm->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);

void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
{
	if (!ksm)
		return;
	kvfree(ksm->slot_hashtable);
	kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
	memzero_explicit(ksm, sizeof(*ksm));
}
EXPORT_SYMBOL_GPL(blk_ksm_destroy);

bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
{
	if (blk_integrity_queue_supports_integrity(q)) {
		pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
		return false;
	}
	q->ksm = ksm;
	return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_register);

void blk_ksm_unregister(struct request_queue *q)
{
	q->ksm = NULL;
}

/**
 * blk_ksm_intersect_modes() - restrict supported modes by child device
 * @parent: The keyslot manager for parent device
 * @child: The keyslot manager for child device, or NULL
 *
 * Clear any crypto mode support bits in @parent that aren't set in @child.
 * If @child is NULL, then all parent bits are cleared.
 *
 * Only use this when setting up the keyslot manager for a layered device,
 * before it's been exposed yet.
 */
void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
			     const struct blk_keyslot_manager *child)
{
	if (child) {
		unsigned int i;

		parent->max_dun_bytes_supported =
			min(parent->max_dun_bytes_supported,
			    child->max_dun_bytes_supported);
		for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
		     i++) {
			parent->crypto_modes_supported[i] &=
				child->crypto_modes_supported[i];
		}
	} else {
		parent->max_dun_bytes_supported = 0;
		memset(parent->crypto_modes_supported, 0,
		       sizeof(parent->crypto_modes_supported));
	}
}
EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);

/**
 * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
 *			   and DUN bytes that another KSM supports. Here,
 *			   "superset" refers to the mathematical meaning of the
 *			   word - i.e. if two KSMs have the *same* capabilities,
 *			   they *are* considered supersets of each other.
 * @ksm_superset: The KSM that we want to verify is a superset
 * @ksm_subset: The KSM that we want to verify is a subset
 *
 * Return: True if @ksm_superset supports a superset of the crypto modes and DUN
 *	   bytes that @ksm_subset supports.
 */
bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
			 struct blk_keyslot_manager *ksm_subset)
{
	int i;

	if (!ksm_subset)
		return true;

	if (!ksm_superset)
		return false;

	for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
		if (ksm_subset->crypto_modes_supported[i] &
		    (~ksm_superset->crypto_modes_supported[i])) {
			return false;
		}
	}

	if (ksm_subset->max_dun_bytes_supported >
	    ksm_superset->max_dun_bytes_supported) {
		return false;
	}

	return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_is_superset);

/**
 * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
 *				   another KSM
 * @target_ksm: The KSM whose restrictions to update.
 * @reference_ksm: The KSM to whose restrictions this function will update
 *		   @target_ksm's restrictions to.
 *
 * Blk-crypto requires that crypto capabilities that were
 * advertised when a bio was created continue to be supported by the
 * device until that bio is ended. This is turn means that a device cannot
 * shrink its advertised crypto capabilities without any explicit
 * synchronization with upper layers. So if there's no such explicit
 * synchronization, @reference_ksm must support all the crypto capabilities that
 * @target_ksm does
 * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
 *
 * Note also that as long as the crypto capabilities are being expanded, the
 * order of updates becoming visible is not important because it's alright
 * for blk-crypto to see stale values - they only cause blk-crypto to
 * believe that a crypto capability isn't supported when it actually is (which
 * might result in blk-crypto-fallback being used if available, or the bio being
 * failed).
 */
void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
				 struct blk_keyslot_manager *reference_ksm)
{
	memcpy(target_ksm->crypto_modes_supported,
	       reference_ksm->crypto_modes_supported,
	       sizeof(target_ksm->crypto_modes_supported));

	target_ksm->max_dun_bytes_supported =
				reference_ksm->max_dun_bytes_supported;
}
EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);

/**
 * blk_ksm_init_passthrough() - Init a passthrough keyslot manager
 * @ksm: The keyslot manager to init
 *
 * Initialize a passthrough keyslot manager.
 * Called by e.g. storage drivers to set up a keyslot manager in their
 * request_queue, when the storage driver wants to manage its keys by itself.
 * This is useful for inline encryption hardware that doesn't have the concept
 * of keyslots, and for layered devices.
 */
void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
{
	memset(ksm, 0, sizeof(*ksm));
	init_rwsem(&ksm->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);