summaryrefslogtreecommitdiff
path: root/block/blk.h
blob: 3c510a4b5054c584a28cd06a2cf67fe55b02813e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H

#include <linux/idr.h>

/* Amount of time in which a process may batch requests */
#define BLK_BATCH_TIME	(HZ/50UL)

/* Number of requests a "batching" process may submit */
#define BLK_BATCH_REQ	32

extern struct kmem_cache *blk_requestq_cachep;
extern struct kobj_type blk_queue_ktype;
extern struct ida blk_queue_ida;

static inline void __blk_get_queue(struct request_queue *q)
{
	kobject_get(&q->kobj);
}

void init_request_from_bio(struct request *req, struct bio *bio);
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
			struct bio *bio);
int blk_rq_append_bio(struct request_queue *q, struct request *rq,
		      struct bio *bio);
void blk_drain_queue(struct request_queue *q, bool drain_all);
void blk_dequeue_request(struct request *rq);
void __blk_queue_free_tags(struct request_queue *q);
bool __blk_end_bidi_request(struct request *rq, int error,
			    unsigned int nr_bytes, unsigned int bidi_bytes);

void blk_rq_timed_out_timer(unsigned long data);
void blk_delete_timer(struct request *);
void blk_add_timer(struct request *);
void __generic_unplug_device(struct request_queue *);

/*
 * Internal atomic flags for request handling
 */
enum rq_atomic_flags {
	REQ_ATOM_COMPLETE = 0,
};

/*
 * EH timer and IO completion will both attempt to 'grab' the request, make
 * sure that only one of them succeeds
 */
static inline int blk_mark_rq_complete(struct request *rq)
{
	return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
}

static inline void blk_clear_rq_complete(struct request *rq)
{
	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
}

/*
 * Internal elevator interface
 */
#define ELV_ON_HASH(rq)		(!hlist_unhashed(&(rq)->hash))

void blk_insert_flush(struct request *rq);
void blk_abort_flushes(struct request_queue *q);

static inline struct request *__elv_next_request(struct request_queue *q)
{
	struct request *rq;

	while (1) {
		if (!list_empty(&q->queue_head)) {
			rq = list_entry_rq(q->queue_head.next);
			return rq;
		}

		/*
		 * Flush request is running and flush request isn't queueable
		 * in the drive, we can hold the queue till flush request is
		 * finished. Even we don't do this, driver can't dispatch next
		 * requests and will requeue them. And this can improve
		 * throughput too. For example, we have request flush1, write1,
		 * flush 2. flush1 is dispatched, then queue is hold, write1
		 * isn't inserted to queue. After flush1 is finished, flush2
		 * will be dispatched. Since disk cache is already clean,
		 * flush2 will be finished very soon, so looks like flush2 is
		 * folded to flush1.
		 * Since the queue is hold, a flag is set to indicate the queue
		 * should be restarted later. Please see flush_end_io() for
		 * details.
		 */
		if (q->flush_pending_idx != q->flush_running_idx &&
				!queue_flush_queueable(q)) {
			q->flush_queue_delayed = 1;
			return NULL;
		}
		if (unlikely(blk_queue_dead(q)) ||
		    !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
			return NULL;
	}
}

static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
{
	struct elevator_queue *e = q->elevator;

	if (e->type->ops.elevator_activate_req_fn)
		e->type->ops.elevator_activate_req_fn(q, rq);
}

static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
{
	struct elevator_queue *e = q->elevator;

	if (e->type->ops.elevator_deactivate_req_fn)
		e->type->ops.elevator_deactivate_req_fn(q, rq);
}

#ifdef CONFIG_FAIL_IO_TIMEOUT
int blk_should_fake_timeout(struct request_queue *);
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
				const char *, size_t);
#else
static inline int blk_should_fake_timeout(struct request_queue *q)
{
	return 0;
}
#endif

int ll_back_merge_fn(struct request_queue *q, struct request *req,
		     struct bio *bio);
int ll_front_merge_fn(struct request_queue *q, struct request *req, 
		      struct bio *bio);
int attempt_back_merge(struct request_queue *q, struct request *rq);
int attempt_front_merge(struct request_queue *q, struct request *rq);
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
				struct request *next);
void blk_recalc_rq_segments(struct request *rq);
void blk_rq_set_mixed_merge(struct request *rq);

void blk_queue_congestion_threshold(struct request_queue *q);

int blk_dev_init(void);

void elv_quiesce_start(struct request_queue *q);
void elv_quiesce_end(struct request_queue *q);


/*
 * Return the threshold (number of used requests) at which the queue is
 * considered to be congested.  It include a little hysteresis to keep the
 * context switch rate down.
 */
static inline int queue_congestion_on_threshold(struct request_queue *q)
{
	return q->nr_congestion_on;
}

/*
 * The threshold at which a queue is considered to be uncongested
 */
static inline int queue_congestion_off_threshold(struct request_queue *q)
{
	return q->nr_congestion_off;
}

static inline int blk_cpu_to_group(int cpu)
{
	int group = NR_CPUS;
#ifdef CONFIG_SCHED_MC
	const struct cpumask *mask = cpu_coregroup_mask(cpu);
	group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
	group = cpumask_first(topology_thread_cpumask(cpu));
#else
	return cpu;
#endif
	if (likely(group < NR_CPUS))
		return group;
	return cpu;
}

/*
 * Contribute to IO statistics IFF:
 *
 *	a) it's attached to a gendisk, and
 *	b) the queue had IO stats enabled when this request was started, and
 *	c) it's a file system request or a discard request
 */
static inline int blk_do_io_stat(struct request *rq)
{
	return rq->rq_disk &&
	       (rq->cmd_flags & REQ_IO_STAT) &&
	       (rq->cmd_type == REQ_TYPE_FS ||
	        (rq->cmd_flags & REQ_DISCARD));
}

/*
 * Internal io_context interface
 */
void get_io_context(struct io_context *ioc);
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);

void create_io_context_slowpath(struct task_struct *task, gfp_t gfp_mask,
				int node);

/**
 * create_io_context - try to create task->io_context
 * @task: target task
 * @gfp_mask: allocation mask
 * @node: allocation node
 *
 * If @task->io_context is %NULL, allocate a new io_context and install it.
 * Returns the current @task->io_context which may be %NULL if allocation
 * failed.
 *
 * Note that this function can't be called with IRQ disabled because
 * task_lock which protects @task->io_context is IRQ-unsafe.
 */
static inline struct io_context *create_io_context(struct task_struct *task,
						   gfp_t gfp_mask, int node)
{
	WARN_ON_ONCE(irqs_disabled());
	if (unlikely(!task->io_context))
		create_io_context_slowpath(task, gfp_mask, node);
	return task->io_context;
}

/*
 * Internal throttling interface
 */
#ifdef CONFIG_BLK_DEV_THROTTLING
extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
extern void blk_throtl_drain(struct request_queue *q);
extern int blk_throtl_init(struct request_queue *q);
extern void blk_throtl_exit(struct request_queue *q);
extern void blk_throtl_release(struct request_queue *q);
#else /* CONFIG_BLK_DEV_THROTTLING */
static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
{
	return false;
}
static inline void blk_throtl_drain(struct request_queue *q) { }
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
static inline void blk_throtl_exit(struct request_queue *q) { }
static inline void blk_throtl_release(struct request_queue *q) { }
#endif /* CONFIG_BLK_DEV_THROTTLING */

#endif /* BLK_INTERNAL_H */