summaryrefslogtreecommitdiff
path: root/block/blk-merge.c
blob: a04e991b5ded96716eeee0d02706ddf0d4cb38ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
// SPDX-License-Identifier: GPL-2.0
/*
 * Functions related to segment and merge handling
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>

#include <trace/events/block.h>

#include "blk.h"

static inline bool bio_will_gap(struct request_queue *q,
		struct request *prev_rq, struct bio *prev, struct bio *next)
{
	struct bio_vec pb, nb;

	if (!bio_has_data(prev) || !queue_virt_boundary(q))
		return false;

	/*
	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
	 * is quite difficult to respect the sg gap limit.  We work hard to
	 * merge a huge number of small single bios in case of mkfs.
	 */
	if (prev_rq)
		bio_get_first_bvec(prev_rq->bio, &pb);
	else
		bio_get_first_bvec(prev, &pb);
	if (pb.bv_offset & queue_virt_boundary(q))
		return true;

	/*
	 * We don't need to worry about the situation that the merged segment
	 * ends in unaligned virt boundary:
	 *
	 * - if 'pb' ends aligned, the merged segment ends aligned
	 * - if 'pb' ends unaligned, the next bio must include
	 *   one single bvec of 'nb', otherwise the 'nb' can't
	 *   merge with 'pb'
	 */
	bio_get_last_bvec(prev, &pb);
	bio_get_first_bvec(next, &nb);
	if (biovec_phys_mergeable(q, &pb, &nb))
		return false;
	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
}

static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, req, req->biotail, bio);
}

static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, NULL, bio, req->bio);
}

static struct bio *blk_bio_discard_split(struct request_queue *q,
					 struct bio *bio,
					 struct bio_set *bs,
					 unsigned *nsegs)
{
	unsigned int max_discard_sectors, granularity;
	int alignment;
	sector_t tmp;
	unsigned split_sectors;

	*nsegs = 1;

	/* Zero-sector (unknown) and one-sector granularities are the same.  */
	granularity = max(q->limits.discard_granularity >> 9, 1U);

	max_discard_sectors = min(q->limits.max_discard_sectors,
			bio_allowed_max_sectors(q));
	max_discard_sectors -= max_discard_sectors % granularity;

	if (unlikely(!max_discard_sectors)) {
		/* XXX: warn */
		return NULL;
	}

	if (bio_sectors(bio) <= max_discard_sectors)
		return NULL;

	split_sectors = max_discard_sectors;

	/*
	 * If the next starting sector would be misaligned, stop the discard at
	 * the previous aligned sector.
	 */
	alignment = (q->limits.discard_alignment >> 9) % granularity;

	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
	tmp = sector_div(tmp, granularity);

	if (split_sectors > tmp)
		split_sectors -= tmp;

	return bio_split(bio, split_sectors, GFP_NOIO, bs);
}

static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
{
	*nsegs = 0;

	if (!q->limits.max_write_zeroes_sectors)
		return NULL;

	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
		return NULL;

	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
}

static struct bio *blk_bio_write_same_split(struct request_queue *q,
					    struct bio *bio,
					    struct bio_set *bs,
					    unsigned *nsegs)
{
	*nsegs = 1;

	if (!q->limits.max_write_same_sectors)
		return NULL;

	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
		return NULL;

	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
}

/*
 * Return the maximum number of sectors from the start of a bio that may be
 * submitted as a single request to a block device. If enough sectors remain,
 * align the end to the physical block size. Otherwise align the end to the
 * logical block size. This approach minimizes the number of non-aligned
 * requests that are submitted to a block device if the start of a bio is not
 * aligned to a physical block boundary.
 */
static inline unsigned get_max_io_size(struct request_queue *q,
				       struct bio *bio)
{
	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
	unsigned max_sectors = sectors;
	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);

	max_sectors += start_offset;
	max_sectors &= ~(pbs - 1);
	if (max_sectors > start_offset)
		return max_sectors - start_offset;

	return sectors & (lbs - 1);
}

static inline unsigned get_max_segment_size(const struct request_queue *q,
					    struct page *start_page,
					    unsigned long offset)
{
	unsigned long mask = queue_segment_boundary(q);

	offset = mask & (page_to_phys(start_page) + offset);

	/*
	 * overflow may be triggered in case of zero page physical address
	 * on 32bit arch, use queue's max segment size when that happens.
	 */
	return min_not_zero(mask - offset + 1,
			(unsigned long)queue_max_segment_size(q));
}

/**
 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 * @q:        [in] request queue associated with the bio associated with @bv
 * @bv:       [in] bvec to examine
 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 *            by the number of segments from @bv that may be appended to that
 *            bio without exceeding @max_segs
 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
 *            by the number of sectors from @bv that may be appended to that
 *            bio without exceeding @max_sectors
 * @max_segs: [in] upper bound for *@nsegs
 * @max_sectors: [in] upper bound for *@sectors
 *
 * When splitting a bio, it can happen that a bvec is encountered that is too
 * big to fit in a single segment and hence that it has to be split in the
 * middle. This function verifies whether or not that should happen. The value
 * %true is returned if and only if appending the entire @bv to a bio with
 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 * the block driver.
 */
static bool bvec_split_segs(const struct request_queue *q,
			    const struct bio_vec *bv, unsigned *nsegs,
			    unsigned *sectors, unsigned max_segs,
			    unsigned max_sectors)
{
	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
	unsigned len = min(bv->bv_len, max_len);
	unsigned total_len = 0;
	unsigned seg_size = 0;

	while (len && *nsegs < max_segs) {
		seg_size = get_max_segment_size(q, bv->bv_page,
						bv->bv_offset + total_len);
		seg_size = min(seg_size, len);

		(*nsegs)++;
		total_len += seg_size;
		len -= seg_size;

		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
			break;
	}

	*sectors += total_len >> 9;

	/* tell the caller to split the bvec if it is too big to fit */
	return len > 0 || bv->bv_len > max_len;
}

/**
 * blk_bio_segment_split - split a bio in two bios
 * @q:    [in] request queue pointer
 * @bio:  [in] bio to be split
 * @bs:	  [in] bio set to allocate the clone from
 * @segs: [out] number of segments in the bio with the first half of the sectors
 *
 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 * following is guaranteed for the cloned bio:
 * - That it has at most get_max_io_size(@q, @bio) sectors.
 * - That it has at most queue_max_segments(@q) segments.
 *
 * Except for discard requests the cloned bio will point at the bi_io_vec of
 * the original bio. It is the responsibility of the caller to ensure that the
 * original bio is not freed before the cloned bio. The caller is also
 * responsible for ensuring that @bs is only destroyed after processing of the
 * split bio has finished.
 */
static struct bio *blk_bio_segment_split(struct request_queue *q,
					 struct bio *bio,
					 struct bio_set *bs,
					 unsigned *segs)
{
	struct bio_vec bv, bvprv, *bvprvp = NULL;
	struct bvec_iter iter;
	unsigned nsegs = 0, sectors = 0;
	const unsigned max_sectors = get_max_io_size(q, bio);
	const unsigned max_segs = queue_max_segments(q);

	bio_for_each_bvec(bv, bio, iter) {
		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
			goto split;

		if (nsegs < max_segs &&
		    sectors + (bv.bv_len >> 9) <= max_sectors &&
		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
			nsegs++;
			sectors += bv.bv_len >> 9;
		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
					 max_sectors)) {
			goto split;
		}

		bvprv = bv;
		bvprvp = &bvprv;
	}

	*segs = nsegs;
	return NULL;
split:
	*segs = nsegs;
	return bio_split(bio, sectors, GFP_NOIO, bs);
}

/**
 * __blk_queue_split - split a bio and submit the second half
 * @q:       [in] request queue pointer
 * @bio:     [in, out] bio to be split
 * @nr_segs: [out] number of segments in the first bio
 *
 * Split a bio into two bios, chain the two bios, submit the second half and
 * store a pointer to the first half in *@bio. If the second bio is still too
 * big it will be split by a recursive call to this function. Since this
 * function may allocate a new bio from @q->bio_split, it is the responsibility
 * of the caller to ensure that @q is only released after processing of the
 * split bio has finished.
 */
void __blk_queue_split(struct request_queue *q, struct bio **bio,
		unsigned int *nr_segs)
{
	struct bio *split = NULL;

	switch (bio_op(*bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
		break;
	case REQ_OP_WRITE_ZEROES:
		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
				nr_segs);
		break;
	case REQ_OP_WRITE_SAME:
		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
				nr_segs);
		break;
	default:
		/*
		 * All drivers must accept single-segments bios that are <=
		 * PAGE_SIZE.  This is a quick and dirty check that relies on
		 * the fact that bi_io_vec[0] is always valid if a bio has data.
		 * The check might lead to occasional false negatives when bios
		 * are cloned, but compared to the performance impact of cloned
		 * bios themselves the loop below doesn't matter anyway.
		 */
		if (!q->limits.chunk_sectors &&
		    (*bio)->bi_vcnt == 1 &&
		    ((*bio)->bi_io_vec[0].bv_len +
		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
			*nr_segs = 1;
			break;
		}
		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
		break;
	}

	if (split) {
		/* there isn't chance to merge the splitted bio */
		split->bi_opf |= REQ_NOMERGE;

		bio_chain(split, *bio);
		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
		generic_make_request(*bio);
		*bio = split;
	}
}

/**
 * blk_queue_split - split a bio and submit the second half
 * @q:   [in] request queue pointer
 * @bio: [in, out] bio to be split
 *
 * Split a bio into two bios, chains the two bios, submit the second half and
 * store a pointer to the first half in *@bio. Since this function may allocate
 * a new bio from @q->bio_split, it is the responsibility of the caller to
 * ensure that @q is only released after processing of the split bio has
 * finished.
 */
void blk_queue_split(struct request_queue *q, struct bio **bio)
{
	unsigned int nr_segs;

	__blk_queue_split(q, bio, &nr_segs);
}
EXPORT_SYMBOL(blk_queue_split);

unsigned int blk_recalc_rq_segments(struct request *rq)
{
	unsigned int nr_phys_segs = 0;
	unsigned int nr_sectors = 0;
	struct req_iterator iter;
	struct bio_vec bv;

	if (!rq->bio)
		return 0;

	switch (bio_op(rq->bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
	case REQ_OP_WRITE_ZEROES:
		return 0;
	case REQ_OP_WRITE_SAME:
		return 1;
	}

	rq_for_each_bvec(bv, rq, iter)
		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
				UINT_MAX, UINT_MAX);
	return nr_phys_segs;
}

static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
		struct scatterlist *sglist)
{
	if (!*sg)
		return sglist;

	/*
	 * If the driver previously mapped a shorter list, we could see a
	 * termination bit prematurely unless it fully inits the sg table
	 * on each mapping. We KNOW that there must be more entries here
	 * or the driver would be buggy, so force clear the termination bit
	 * to avoid doing a full sg_init_table() in drivers for each command.
	 */
	sg_unmark_end(*sg);
	return sg_next(*sg);
}

static unsigned blk_bvec_map_sg(struct request_queue *q,
		struct bio_vec *bvec, struct scatterlist *sglist,
		struct scatterlist **sg)
{
	unsigned nbytes = bvec->bv_len;
	unsigned nsegs = 0, total = 0;

	while (nbytes > 0) {
		unsigned offset = bvec->bv_offset + total;
		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
					offset), nbytes);
		struct page *page = bvec->bv_page;

		/*
		 * Unfortunately a fair number of drivers barf on scatterlists
		 * that have an offset larger than PAGE_SIZE, despite other
		 * subsystems dealing with that invariant just fine.  For now
		 * stick to the legacy format where we never present those from
		 * the block layer, but the code below should be removed once
		 * these offenders (mostly MMC/SD drivers) are fixed.
		 */
		page += (offset >> PAGE_SHIFT);
		offset &= ~PAGE_MASK;

		*sg = blk_next_sg(sg, sglist);
		sg_set_page(*sg, page, len, offset);

		total += len;
		nbytes -= len;
		nsegs++;
	}

	return nsegs;
}

static inline int __blk_bvec_map_sg(struct bio_vec bv,
		struct scatterlist *sglist, struct scatterlist **sg)
{
	*sg = blk_next_sg(sg, sglist);
	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
	return 1;
}

/* only try to merge bvecs into one sg if they are from two bios */
static inline bool
__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
			   struct bio_vec *bvprv, struct scatterlist **sg)
{

	int nbytes = bvec->bv_len;

	if (!*sg)
		return false;

	if ((*sg)->length + nbytes > queue_max_segment_size(q))
		return false;

	if (!biovec_phys_mergeable(q, bvprv, bvec))
		return false;

	(*sg)->length += nbytes;

	return true;
}

static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
			     struct scatterlist *sglist,
			     struct scatterlist **sg)
{
	struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
	struct bvec_iter iter;
	int nsegs = 0;
	bool new_bio = false;

	for_each_bio(bio) {
		bio_for_each_bvec(bvec, bio, iter) {
			/*
			 * Only try to merge bvecs from two bios given we
			 * have done bio internal merge when adding pages
			 * to bio
			 */
			if (new_bio &&
			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
				goto next_bvec;

			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
			else
				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 next_bvec:
			new_bio = false;
		}
		if (likely(bio->bi_iter.bi_size)) {
			bvprv = bvec;
			new_bio = true;
		}
	}

	return nsegs;
}

/*
 * map a request to scatterlist, return number of sg entries setup. Caller
 * must make sure sg can hold rq->nr_phys_segments entries
 */
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
		struct scatterlist *sglist, struct scatterlist **last_sg)
{
	int nsegs = 0;

	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
	else if (rq->bio)
		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);

	if (*last_sg)
		sg_mark_end(*last_sg);

	/*
	 * Something must have been wrong if the figured number of
	 * segment is bigger than number of req's physical segments
	 */
	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));

	return nsegs;
}
EXPORT_SYMBOL(__blk_rq_map_sg);

static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
		unsigned int nr_phys_segs)
{
	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
		goto no_merge;

	if (blk_integrity_merge_bio(req->q, req, bio) == false)
		goto no_merge;

	/*
	 * This will form the start of a new hw segment.  Bump both
	 * counters.
	 */
	req->nr_phys_segments += nr_phys_segs;
	return 1;

no_merge:
	req_set_nomerge(req->q, req);
	return 0;
}

int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
{
	if (req_gap_back_merge(req, bio))
		return 0;
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_back_merge(req, bio))
		return 0;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
		req_set_nomerge(req->q, req);
		return 0;
	}

	return ll_new_hw_segment(req, bio, nr_segs);
}

int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
{
	if (req_gap_front_merge(req, bio))
		return 0;
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_front_merge(req, bio))
		return 0;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
		req_set_nomerge(req->q, req);
		return 0;
	}

	return ll_new_hw_segment(req, bio, nr_segs);
}

static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
		struct request *next)
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
	return true;
no_merge:
	req_set_nomerge(q, req);
	return false;
}

static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
				struct request *next)
{
	int total_phys_segments;

	if (req_gap_back_merge(req, next->bio))
		return 0;

	/*
	 * Will it become too large?
	 */
	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		return 0;

	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
	if (total_phys_segments > queue_max_segments(q))
		return 0;

	if (blk_integrity_merge_rq(q, req, next) == false)
		return 0;

	/* Merge is OK... */
	req->nr_phys_segments = total_phys_segments;
	return 1;
}

/**
 * blk_rq_set_mixed_merge - mark a request as mixed merge
 * @rq: request to mark as mixed merge
 *
 * Description:
 *     @rq is about to be mixed merged.  Make sure the attributes
 *     which can be mixed are set in each bio and mark @rq as mixed
 *     merged.
 */
void blk_rq_set_mixed_merge(struct request *rq)
{
	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
	struct bio *bio;

	if (rq->rq_flags & RQF_MIXED_MERGE)
		return;

	/*
	 * @rq will no longer represent mixable attributes for all the
	 * contained bios.  It will just track those of the first one.
	 * Distributes the attributs to each bio.
	 */
	for (bio = rq->bio; bio; bio = bio->bi_next) {
		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
		bio->bi_opf |= ff;
	}
	rq->rq_flags |= RQF_MIXED_MERGE;
}

static void blk_account_io_merge(struct request *req)
{
	if (blk_do_io_stat(req)) {
		struct hd_struct *part;

		part_stat_lock();
		part = req->part;

		part_dec_in_flight(req->q, part, rq_data_dir(req));

		hd_struct_put(part);
		part_stat_unlock();
	}
}
/*
 * Two cases of handling DISCARD merge:
 * If max_discard_segments > 1, the driver takes every bio
 * as a range and send them to controller together. The ranges
 * needn't to be contiguous.
 * Otherwise, the bios/requests will be handled as same as
 * others which should be contiguous.
 */
static inline bool blk_discard_mergable(struct request *req)
{
	if (req_op(req) == REQ_OP_DISCARD &&
	    queue_max_discard_segments(req->q) > 1)
		return true;
	return false;
}

static enum elv_merge blk_try_req_merge(struct request *req,
					struct request *next)
{
	if (blk_discard_mergable(req))
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
		return ELEVATOR_BACK_MERGE;

	return ELEVATOR_NO_MERGE;
}

/*
 * For non-mq, this has to be called with the request spinlock acquired.
 * For mq with scheduling, the appropriate queue wide lock should be held.
 */
static struct request *attempt_merge(struct request_queue *q,
				     struct request *req, struct request *next)
{
	if (!rq_mergeable(req) || !rq_mergeable(next))
		return NULL;

	if (req_op(req) != req_op(next))
		return NULL;

	if (rq_data_dir(req) != rq_data_dir(next)
	    || req->rq_disk != next->rq_disk)
		return NULL;

	if (req_op(req) == REQ_OP_WRITE_SAME &&
	    !blk_write_same_mergeable(req->bio, next->bio))
		return NULL;

	/*
	 * Don't allow merge of different write hints, or for a hint with
	 * non-hint IO.
	 */
	if (req->write_hint != next->write_hint)
		return NULL;

	if (req->ioprio != next->ioprio)
		return NULL;

	/*
	 * If we are allowed to merge, then append bio list
	 * from next to rq and release next. merge_requests_fn
	 * will have updated segment counts, update sector
	 * counts here. Handle DISCARDs separately, as they
	 * have separate settings.
	 */

	switch (blk_try_req_merge(req, next)) {
	case ELEVATOR_DISCARD_MERGE:
		if (!req_attempt_discard_merge(q, req, next))
			return NULL;
		break;
	case ELEVATOR_BACK_MERGE:
		if (!ll_merge_requests_fn(q, req, next))
			return NULL;
		break;
	default:
		return NULL;
	}

	/*
	 * If failfast settings disagree or any of the two is already
	 * a mixed merge, mark both as mixed before proceeding.  This
	 * makes sure that all involved bios have mixable attributes
	 * set properly.
	 */
	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
		blk_rq_set_mixed_merge(req);
		blk_rq_set_mixed_merge(next);
	}

	/*
	 * At this point we have either done a back merge or front merge. We
	 * need the smaller start_time_ns of the merged requests to be the
	 * current request for accounting purposes.
	 */
	if (next->start_time_ns < req->start_time_ns)
		req->start_time_ns = next->start_time_ns;

	req->biotail->bi_next = next->bio;
	req->biotail = next->biotail;

	req->__data_len += blk_rq_bytes(next);

	if (!blk_discard_mergable(req))
		elv_merge_requests(q, req, next);

	/*
	 * 'next' is going away, so update stats accordingly
	 */
	blk_account_io_merge(next);

	/*
	 * ownership of bio passed from next to req, return 'next' for
	 * the caller to free
	 */
	next->bio = NULL;
	return next;
}

struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
{
	struct request *next = elv_latter_request(q, rq);

	if (next)
		return attempt_merge(q, rq, next);

	return NULL;
}

struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
{
	struct request *prev = elv_former_request(q, rq);

	if (prev)
		return attempt_merge(q, prev, rq);

	return NULL;
}

int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
			  struct request *next)
{
	struct request *free;

	free = attempt_merge(q, rq, next);
	if (free) {
		blk_put_request(free);
		return 1;
	}

	return 0;
}

bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
{
	if (!rq_mergeable(rq) || !bio_mergeable(bio))
		return false;

	if (req_op(rq) != bio_op(bio))
		return false;

	/* different data direction or already started, don't merge */
	if (bio_data_dir(bio) != rq_data_dir(rq))
		return false;

	/* must be same device */
	if (rq->rq_disk != bio->bi_disk)
		return false;

	/* only merge integrity protected bio into ditto rq */
	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
		return false;

	/* must be using the same buffer */
	if (req_op(rq) == REQ_OP_WRITE_SAME &&
	    !blk_write_same_mergeable(rq->bio, bio))
		return false;

	/*
	 * Don't allow merge of different write hints, or for a hint with
	 * non-hint IO.
	 */
	if (rq->write_hint != bio->bi_write_hint)
		return false;

	if (rq->ioprio != bio_prio(bio))
		return false;

	return true;
}

enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
{
	if (blk_discard_mergable(rq))
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
		return ELEVATOR_BACK_MERGE;
	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
		return ELEVATOR_FRONT_MERGE;
	return ELEVATOR_NO_MERGE;
}