summaryrefslogtreecommitdiff
path: root/block/blk-core.c
blob: 996ed906d8ca518c62dba691ad7b579ee794e1a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
/*
 * Copyright (C) 1991, 1992 Linus Torvalds
 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
 *	-  July2000
 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
 */

/*
 * This handles all read/write requests to block devices
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/blktrace_api.h>
#include <linux/fault-inject.h>
#include <trace/block.h>

#include "blk.h"

DEFINE_TRACE(block_plug);
DEFINE_TRACE(block_unplug_io);
DEFINE_TRACE(block_unplug_timer);
DEFINE_TRACE(block_getrq);
DEFINE_TRACE(block_sleeprq);
DEFINE_TRACE(block_rq_requeue);
DEFINE_TRACE(block_bio_backmerge);
DEFINE_TRACE(block_bio_frontmerge);
DEFINE_TRACE(block_bio_queue);
DEFINE_TRACE(block_rq_complete);
DEFINE_TRACE(block_remap);	/* Also used in drivers/md/dm.c */
EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);

static int __make_request(struct request_queue *q, struct bio *bio);

/*
 * For the allocated request tables
 */
static struct kmem_cache *request_cachep;

/*
 * For queue allocation
 */
struct kmem_cache *blk_requestq_cachep;

/*
 * Controlling structure to kblockd
 */
static struct workqueue_struct *kblockd_workqueue;

static void drive_stat_acct(struct request *rq, int new_io)
{
	struct gendisk *disk = rq->rq_disk;
	struct hd_struct *part;
	int rw = rq_data_dir(rq);
	int cpu;

	if (!blk_fs_request(rq) || !disk || !blk_do_io_stat(disk->queue))
		return;

	cpu = part_stat_lock();
	part = disk_map_sector_rcu(rq->rq_disk, rq->sector);

	if (!new_io)
		part_stat_inc(cpu, part, merges[rw]);
	else {
		part_round_stats(cpu, part);
		part_inc_in_flight(part);
	}

	part_stat_unlock();
}

void blk_queue_congestion_threshold(struct request_queue *q)
{
	int nr;

	nr = q->nr_requests - (q->nr_requests / 8) + 1;
	if (nr > q->nr_requests)
		nr = q->nr_requests;
	q->nr_congestion_on = nr;

	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
	if (nr < 1)
		nr = 1;
	q->nr_congestion_off = nr;
}

/**
 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 * @bdev:	device
 *
 * Locates the passed device's request queue and returns the address of its
 * backing_dev_info
 *
 * Will return NULL if the request queue cannot be located.
 */
struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
{
	struct backing_dev_info *ret = NULL;
	struct request_queue *q = bdev_get_queue(bdev);

	if (q)
		ret = &q->backing_dev_info;
	return ret;
}
EXPORT_SYMBOL(blk_get_backing_dev_info);

void blk_rq_init(struct request_queue *q, struct request *rq)
{
	memset(rq, 0, sizeof(*rq));

	INIT_LIST_HEAD(&rq->queuelist);
	INIT_LIST_HEAD(&rq->timeout_list);
	rq->cpu = -1;
	rq->q = q;
	rq->sector = rq->hard_sector = (sector_t) -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->cmd = rq->__cmd;
	rq->tag = -1;
	rq->ref_count = 1;
}
EXPORT_SYMBOL(blk_rq_init);

static void req_bio_endio(struct request *rq, struct bio *bio,
			  unsigned int nbytes, int error)
{
	struct request_queue *q = rq->q;

	if (&q->bar_rq != rq) {
		if (error)
			clear_bit(BIO_UPTODATE, &bio->bi_flags);
		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
			error = -EIO;

		if (unlikely(nbytes > bio->bi_size)) {
			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
			       __func__, nbytes, bio->bi_size);
			nbytes = bio->bi_size;
		}

		if (unlikely(rq->cmd_flags & REQ_QUIET))
			set_bit(BIO_QUIET, &bio->bi_flags);

		bio->bi_size -= nbytes;
		bio->bi_sector += (nbytes >> 9);

		if (bio_integrity(bio))
			bio_integrity_advance(bio, nbytes);

		if (bio->bi_size == 0)
			bio_endio(bio, error);
	} else {

		/*
		 * Okay, this is the barrier request in progress, just
		 * record the error;
		 */
		if (error && !q->orderr)
			q->orderr = error;
	}
}

void blk_dump_rq_flags(struct request *rq, char *msg)
{
	int bit;

	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
		rq->cmd_flags);

	printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
						(unsigned long long)rq->sector,
						rq->nr_sectors,
						rq->current_nr_sectors);
	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
						rq->bio, rq->biotail,
						rq->buffer, rq->data,
						rq->data_len);

	if (blk_pc_request(rq)) {
		printk(KERN_INFO "  cdb: ");
		for (bit = 0; bit < BLK_MAX_CDB; bit++)
			printk("%02x ", rq->cmd[bit]);
		printk("\n");
	}
}
EXPORT_SYMBOL(blk_dump_rq_flags);

/*
 * "plug" the device if there are no outstanding requests: this will
 * force the transfer to start only after we have put all the requests
 * on the list.
 *
 * This is called with interrupts off and no requests on the queue and
 * with the queue lock held.
 */
void blk_plug_device(struct request_queue *q)
{
	WARN_ON(!irqs_disabled());

	/*
	 * don't plug a stopped queue, it must be paired with blk_start_queue()
	 * which will restart the queueing
	 */
	if (blk_queue_stopped(q))
		return;

	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
		trace_block_plug(q);
	}
}
EXPORT_SYMBOL(blk_plug_device);

/**
 * blk_plug_device_unlocked - plug a device without queue lock held
 * @q:    The &struct request_queue to plug
 *
 * Description:
 *   Like @blk_plug_device(), but grabs the queue lock and disables
 *   interrupts.
 **/
void blk_plug_device_unlocked(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	blk_plug_device(q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_plug_device_unlocked);

/*
 * remove the queue from the plugged list, if present. called with
 * queue lock held and interrupts disabled.
 */
int blk_remove_plug(struct request_queue *q)
{
	WARN_ON(!irqs_disabled());

	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
		return 0;

	del_timer(&q->unplug_timer);
	return 1;
}
EXPORT_SYMBOL(blk_remove_plug);

/*
 * remove the plug and let it rip..
 */
void __generic_unplug_device(struct request_queue *q)
{
	if (unlikely(blk_queue_stopped(q)))
		return;
	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
		return;

	q->request_fn(q);
}

/**
 * generic_unplug_device - fire a request queue
 * @q:    The &struct request_queue in question
 *
 * Description:
 *   Linux uses plugging to build bigger requests queues before letting
 *   the device have at them. If a queue is plugged, the I/O scheduler
 *   is still adding and merging requests on the queue. Once the queue
 *   gets unplugged, the request_fn defined for the queue is invoked and
 *   transfers started.
 **/
void generic_unplug_device(struct request_queue *q)
{
	if (blk_queue_plugged(q)) {
		spin_lock_irq(q->queue_lock);
		__generic_unplug_device(q);
		spin_unlock_irq(q->queue_lock);
	}
}
EXPORT_SYMBOL(generic_unplug_device);

static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
				   struct page *page)
{
	struct request_queue *q = bdi->unplug_io_data;

	blk_unplug(q);
}

void blk_unplug_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, unplug_work);

	trace_block_unplug_io(q);
	q->unplug_fn(q);
}

void blk_unplug_timeout(unsigned long data)
{
	struct request_queue *q = (struct request_queue *)data;

	trace_block_unplug_timer(q);
	kblockd_schedule_work(q, &q->unplug_work);
}

void blk_unplug(struct request_queue *q)
{
	/*
	 * devices don't necessarily have an ->unplug_fn defined
	 */
	if (q->unplug_fn) {
		trace_block_unplug_io(q);
		q->unplug_fn(q);
	}
}
EXPORT_SYMBOL(blk_unplug);

static void blk_invoke_request_fn(struct request_queue *q)
{
	if (unlikely(blk_queue_stopped(q)))
		return;

	/*
	 * one level of recursion is ok and is much faster than kicking
	 * the unplug handling
	 */
	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
		q->request_fn(q);
		queue_flag_clear(QUEUE_FLAG_REENTER, q);
	} else {
		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
		kblockd_schedule_work(q, &q->unplug_work);
	}
}

/**
 * blk_start_queue - restart a previously stopped queue
 * @q:    The &struct request_queue in question
 *
 * Description:
 *   blk_start_queue() will clear the stop flag on the queue, and call
 *   the request_fn for the queue if it was in a stopped state when
 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 **/
void blk_start_queue(struct request_queue *q)
{
	WARN_ON(!irqs_disabled());

	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
	blk_invoke_request_fn(q);
}
EXPORT_SYMBOL(blk_start_queue);

/**
 * blk_stop_queue - stop a queue
 * @q:    The &struct request_queue in question
 *
 * Description:
 *   The Linux block layer assumes that a block driver will consume all
 *   entries on the request queue when the request_fn strategy is called.
 *   Often this will not happen, because of hardware limitations (queue
 *   depth settings). If a device driver gets a 'queue full' response,
 *   or if it simply chooses not to queue more I/O at one point, it can
 *   call this function to prevent the request_fn from being called until
 *   the driver has signalled it's ready to go again. This happens by calling
 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 **/
void blk_stop_queue(struct request_queue *q)
{
	blk_remove_plug(q);
	queue_flag_set(QUEUE_FLAG_STOPPED, q);
}
EXPORT_SYMBOL(blk_stop_queue);

/**
 * blk_sync_queue - cancel any pending callbacks on a queue
 * @q: the queue
 *
 * Description:
 *     The block layer may perform asynchronous callback activity
 *     on a queue, such as calling the unplug function after a timeout.
 *     A block device may call blk_sync_queue to ensure that any
 *     such activity is cancelled, thus allowing it to release resources
 *     that the callbacks might use. The caller must already have made sure
 *     that its ->make_request_fn will not re-add plugging prior to calling
 *     this function.
 *
 */
void blk_sync_queue(struct request_queue *q)
{
	del_timer_sync(&q->unplug_timer);
	del_timer_sync(&q->timeout);
	cancel_work_sync(&q->unplug_work);
}
EXPORT_SYMBOL(blk_sync_queue);

/**
 * __blk_run_queue - run a single device queue
 * @q:	The queue to run
 *
 * Description:
 *    See @blk_run_queue. This variant must be called with the queue lock
 *    held and interrupts disabled.
 *
 */
void __blk_run_queue(struct request_queue *q)
{
	blk_remove_plug(q);

	/*
	 * Only recurse once to avoid overrunning the stack, let the unplug
	 * handling reinvoke the handler shortly if we already got there.
	 */
	if (!elv_queue_empty(q))
		blk_invoke_request_fn(q);
}
EXPORT_SYMBOL(__blk_run_queue);

/**
 * blk_run_queue - run a single device queue
 * @q: The queue to run
 *
 * Description:
 *    Invoke request handling on this queue, if it has pending work to do.
 *    May be used to restart queueing when a request has completed. Also
 *    See @blk_start_queueing.
 *
 */
void blk_run_queue(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	__blk_run_queue(q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_run_queue);

void blk_put_queue(struct request_queue *q)
{
	kobject_put(&q->kobj);
}

void blk_cleanup_queue(struct request_queue *q)
{
	/*
	 * We know we have process context here, so we can be a little
	 * cautious and ensure that pending block actions on this device
	 * are done before moving on. Going into this function, we should
	 * not have processes doing IO to this device.
	 */
	blk_sync_queue(q);

	mutex_lock(&q->sysfs_lock);
	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
	mutex_unlock(&q->sysfs_lock);

	if (q->elevator)
		elevator_exit(q->elevator);

	blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);

static int blk_init_free_list(struct request_queue *q)
{
	struct request_list *rl = &q->rq;

	rl->count[READ] = rl->count[WRITE] = 0;
	rl->starved[READ] = rl->starved[WRITE] = 0;
	rl->elvpriv = 0;
	init_waitqueue_head(&rl->wait[READ]);
	init_waitqueue_head(&rl->wait[WRITE]);

	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
				mempool_free_slab, request_cachep, q->node);

	if (!rl->rq_pool)
		return -ENOMEM;

	return 0;
}

struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
{
	return blk_alloc_queue_node(gfp_mask, -1);
}
EXPORT_SYMBOL(blk_alloc_queue);

struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
{
	struct request_queue *q;
	int err;

	q = kmem_cache_alloc_node(blk_requestq_cachep,
				gfp_mask | __GFP_ZERO, node_id);
	if (!q)
		return NULL;

	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
	q->backing_dev_info.unplug_io_data = q;
	err = bdi_init(&q->backing_dev_info);
	if (err) {
		kmem_cache_free(blk_requestq_cachep, q);
		return NULL;
	}

	init_timer(&q->unplug_timer);
	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
	INIT_LIST_HEAD(&q->timeout_list);
	INIT_WORK(&q->unplug_work, blk_unplug_work);

	kobject_init(&q->kobj, &blk_queue_ktype);

	mutex_init(&q->sysfs_lock);
	spin_lock_init(&q->__queue_lock);

	return q;
}
EXPORT_SYMBOL(blk_alloc_queue_node);

/**
 * blk_init_queue  - prepare a request queue for use with a block device
 * @rfn:  The function to be called to process requests that have been
 *        placed on the queue.
 * @lock: Request queue spin lock
 *
 * Description:
 *    If a block device wishes to use the standard request handling procedures,
 *    which sorts requests and coalesces adjacent requests, then it must
 *    call blk_init_queue().  The function @rfn will be called when there
 *    are requests on the queue that need to be processed.  If the device
 *    supports plugging, then @rfn may not be called immediately when requests
 *    are available on the queue, but may be called at some time later instead.
 *    Plugged queues are generally unplugged when a buffer belonging to one
 *    of the requests on the queue is needed, or due to memory pressure.
 *
 *    @rfn is not required, or even expected, to remove all requests off the
 *    queue, but only as many as it can handle at a time.  If it does leave
 *    requests on the queue, it is responsible for arranging that the requests
 *    get dealt with eventually.
 *
 *    The queue spin lock must be held while manipulating the requests on the
 *    request queue; this lock will be taken also from interrupt context, so irq
 *    disabling is needed for it.
 *
 *    Function returns a pointer to the initialized request queue, or %NULL if
 *    it didn't succeed.
 *
 * Note:
 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 *    when the block device is deactivated (such as at module unload).
 **/

struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
{
	return blk_init_queue_node(rfn, lock, -1);
}
EXPORT_SYMBOL(blk_init_queue);

struct request_queue *
blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
{
	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);

	if (!q)
		return NULL;

	q->node = node_id;
	if (blk_init_free_list(q)) {
		kmem_cache_free(blk_requestq_cachep, q);
		return NULL;
	}

	/*
	 * if caller didn't supply a lock, they get per-queue locking with
	 * our embedded lock
	 */
	if (!lock)
		lock = &q->__queue_lock;

	q->request_fn		= rfn;
	q->prep_rq_fn		= NULL;
	q->unplug_fn		= generic_unplug_device;
	q->queue_flags		= QUEUE_FLAG_DEFAULT;
	q->queue_lock		= lock;

	/*
	 * This also sets hw/phys segments, boundary and size
	 */
	blk_queue_make_request(q, __make_request);

	q->sg_reserved_size = INT_MAX;

	blk_set_cmd_filter_defaults(&q->cmd_filter);

	/*
	 * all done
	 */
	if (!elevator_init(q, NULL)) {
		blk_queue_congestion_threshold(q);
		return q;
	}

	blk_put_queue(q);
	return NULL;
}
EXPORT_SYMBOL(blk_init_queue_node);

int blk_get_queue(struct request_queue *q)
{
	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
		kobject_get(&q->kobj);
		return 0;
	}

	return 1;
}

static inline void blk_free_request(struct request_queue *q, struct request *rq)
{
	if (rq->cmd_flags & REQ_ELVPRIV)
		elv_put_request(q, rq);
	mempool_free(rq, q->rq.rq_pool);
}

static struct request *
blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
{
	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);

	if (!rq)
		return NULL;

	blk_rq_init(q, rq);

	rq->cmd_flags = rw | REQ_ALLOCED;

	if (priv) {
		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
			mempool_free(rq, q->rq.rq_pool);
			return NULL;
		}
		rq->cmd_flags |= REQ_ELVPRIV;
	}

	return rq;
}

/*
 * ioc_batching returns true if the ioc is a valid batching request and
 * should be given priority access to a request.
 */
static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
{
	if (!ioc)
		return 0;

	/*
	 * Make sure the process is able to allocate at least 1 request
	 * even if the batch times out, otherwise we could theoretically
	 * lose wakeups.
	 */
	return ioc->nr_batch_requests == q->nr_batching ||
		(ioc->nr_batch_requests > 0
		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
}

/*
 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 * will cause the process to be a "batcher" on all queues in the system. This
 * is the behaviour we want though - once it gets a wakeup it should be given
 * a nice run.
 */
static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
{
	if (!ioc || ioc_batching(q, ioc))
		return;

	ioc->nr_batch_requests = q->nr_batching;
	ioc->last_waited = jiffies;
}

static void __freed_request(struct request_queue *q, int rw)
{
	struct request_list *rl = &q->rq;

	if (rl->count[rw] < queue_congestion_off_threshold(q))
		blk_clear_queue_congested(q, rw);

	if (rl->count[rw] + 1 <= q->nr_requests) {
		if (waitqueue_active(&rl->wait[rw]))
			wake_up(&rl->wait[rw]);

		blk_clear_queue_full(q, rw);
	}
}

/*
 * A request has just been released.  Account for it, update the full and
 * congestion status, wake up any waiters.   Called under q->queue_lock.
 */
static void freed_request(struct request_queue *q, int rw, int priv)
{
	struct request_list *rl = &q->rq;

	rl->count[rw]--;
	if (priv)
		rl->elvpriv--;

	__freed_request(q, rw);

	if (unlikely(rl->starved[rw ^ 1]))
		__freed_request(q, rw ^ 1);
}

/*
 * Get a free request, queue_lock must be held.
 * Returns NULL on failure, with queue_lock held.
 * Returns !NULL on success, with queue_lock *not held*.
 */
static struct request *get_request(struct request_queue *q, int rw_flags,
				   struct bio *bio, gfp_t gfp_mask)
{
	struct request *rq = NULL;
	struct request_list *rl = &q->rq;
	struct io_context *ioc = NULL;
	const int rw = rw_flags & 0x01;
	int may_queue, priv;

	may_queue = elv_may_queue(q, rw_flags);
	if (may_queue == ELV_MQUEUE_NO)
		goto rq_starved;

	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
		if (rl->count[rw]+1 >= q->nr_requests) {
			ioc = current_io_context(GFP_ATOMIC, q->node);
			/*
			 * The queue will fill after this allocation, so set
			 * it as full, and mark this process as "batching".
			 * This process will be allowed to complete a batch of
			 * requests, others will be blocked.
			 */
			if (!blk_queue_full(q, rw)) {
				ioc_set_batching(q, ioc);
				blk_set_queue_full(q, rw);
			} else {
				if (may_queue != ELV_MQUEUE_MUST
						&& !ioc_batching(q, ioc)) {
					/*
					 * The queue is full and the allocating
					 * process is not a "batcher", and not
					 * exempted by the IO scheduler
					 */
					goto out;
				}
			}
		}
		blk_set_queue_congested(q, rw);
	}

	/*
	 * Only allow batching queuers to allocate up to 50% over the defined
	 * limit of requests, otherwise we could have thousands of requests
	 * allocated with any setting of ->nr_requests
	 */
	if (rl->count[rw] >= (3 * q->nr_requests / 2))
		goto out;

	rl->count[rw]++;
	rl->starved[rw] = 0;

	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
	if (priv)
		rl->elvpriv++;

	spin_unlock_irq(q->queue_lock);

	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
	if (unlikely(!rq)) {
		/*
		 * Allocation failed presumably due to memory. Undo anything
		 * we might have messed up.
		 *
		 * Allocating task should really be put onto the front of the
		 * wait queue, but this is pretty rare.
		 */
		spin_lock_irq(q->queue_lock);
		freed_request(q, rw, priv);

		/*
		 * in the very unlikely event that allocation failed and no
		 * requests for this direction was pending, mark us starved
		 * so that freeing of a request in the other direction will
		 * notice us. another possible fix would be to split the
		 * rq mempool into READ and WRITE
		 */
rq_starved:
		if (unlikely(rl->count[rw] == 0))
			rl->starved[rw] = 1;

		goto out;
	}

	/*
	 * ioc may be NULL here, and ioc_batching will be false. That's
	 * OK, if the queue is under the request limit then requests need
	 * not count toward the nr_batch_requests limit. There will always
	 * be some limit enforced by BLK_BATCH_TIME.
	 */
	if (ioc_batching(q, ioc))
		ioc->nr_batch_requests--;

	trace_block_getrq(q, bio, rw);
out:
	return rq;
}

/*
 * No available requests for this queue, unplug the device and wait for some
 * requests to become available.
 *
 * Called with q->queue_lock held, and returns with it unlocked.
 */
static struct request *get_request_wait(struct request_queue *q, int rw_flags,
					struct bio *bio)
{
	const int rw = rw_flags & 0x01;
	struct request *rq;

	rq = get_request(q, rw_flags, bio, GFP_NOIO);
	while (!rq) {
		DEFINE_WAIT(wait);
		struct io_context *ioc;
		struct request_list *rl = &q->rq;

		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
				TASK_UNINTERRUPTIBLE);

		trace_block_sleeprq(q, bio, rw);

		__generic_unplug_device(q);
		spin_unlock_irq(q->queue_lock);
		io_schedule();

		/*
		 * After sleeping, we become a "batching" process and
		 * will be able to allocate at least one request, and
		 * up to a big batch of them for a small period time.
		 * See ioc_batching, ioc_set_batching
		 */
		ioc = current_io_context(GFP_NOIO, q->node);
		ioc_set_batching(q, ioc);

		spin_lock_irq(q->queue_lock);
		finish_wait(&rl->wait[rw], &wait);

		rq = get_request(q, rw_flags, bio, GFP_NOIO);
	};

	return rq;
}

struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
{
	struct request *rq;

	BUG_ON(rw != READ && rw != WRITE);

	spin_lock_irq(q->queue_lock);
	if (gfp_mask & __GFP_WAIT) {
		rq = get_request_wait(q, rw, NULL);
	} else {
		rq = get_request(q, rw, NULL, gfp_mask);
		if (!rq)
			spin_unlock_irq(q->queue_lock);
	}
	/* q->queue_lock is unlocked at this point */

	return rq;
}
EXPORT_SYMBOL(blk_get_request);

/**
 * blk_start_queueing - initiate dispatch of requests to device
 * @q:		request queue to kick into gear
 *
 * This is basically a helper to remove the need to know whether a queue
 * is plugged or not if someone just wants to initiate dispatch of requests
 * for this queue. Should be used to start queueing on a device outside
 * of ->request_fn() context. Also see @blk_run_queue.
 *
 * The queue lock must be held with interrupts disabled.
 */
void blk_start_queueing(struct request_queue *q)
{
	if (!blk_queue_plugged(q)) {
		if (unlikely(blk_queue_stopped(q)))
			return;
		q->request_fn(q);
	} else
		__generic_unplug_device(q);
}
EXPORT_SYMBOL(blk_start_queueing);

/**
 * blk_requeue_request - put a request back on queue
 * @q:		request queue where request should be inserted
 * @rq:		request to be inserted
 *
 * Description:
 *    Drivers often keep queueing requests until the hardware cannot accept
 *    more, when that condition happens we need to put the request back
 *    on the queue. Must be called with queue lock held.
 */
void blk_requeue_request(struct request_queue *q, struct request *rq)
{
	blk_delete_timer(rq);
	blk_clear_rq_complete(rq);
	trace_block_rq_requeue(q, rq);

	if (blk_rq_tagged(rq))
		blk_queue_end_tag(q, rq);

	elv_requeue_request(q, rq);
}
EXPORT_SYMBOL(blk_requeue_request);

/**
 * blk_insert_request - insert a special request into a request queue
 * @q:		request queue where request should be inserted
 * @rq:		request to be inserted
 * @at_head:	insert request at head or tail of queue
 * @data:	private data
 *
 * Description:
 *    Many block devices need to execute commands asynchronously, so they don't
 *    block the whole kernel from preemption during request execution.  This is
 *    accomplished normally by inserting aritficial requests tagged as
 *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
 *    be scheduled for actual execution by the request queue.
 *
 *    We have the option of inserting the head or the tail of the queue.
 *    Typically we use the tail for new ioctls and so forth.  We use the head
 *    of the queue for things like a QUEUE_FULL message from a device, or a
 *    host that is unable to accept a particular command.
 */
void blk_insert_request(struct request_queue *q, struct request *rq,
			int at_head, void *data)
{
	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
	unsigned long flags;

	/*
	 * tell I/O scheduler that this isn't a regular read/write (ie it
	 * must not attempt merges on this) and that it acts as a soft
	 * barrier
	 */
	rq->cmd_type = REQ_TYPE_SPECIAL;
	rq->cmd_flags |= REQ_SOFTBARRIER;

	rq->special = data;

	spin_lock_irqsave(q->queue_lock, flags);

	/*
	 * If command is tagged, release the tag
	 */
	if (blk_rq_tagged(rq))
		blk_queue_end_tag(q, rq);

	drive_stat_acct(rq, 1);
	__elv_add_request(q, rq, where, 0);
	blk_start_queueing(q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_insert_request);

/*
 * add-request adds a request to the linked list.
 * queue lock is held and interrupts disabled, as we muck with the
 * request queue list.
 */
static inline void add_request(struct request_queue *q, struct request *req)
{
	drive_stat_acct(req, 1);

	/*
	 * elevator indicated where it wants this request to be
	 * inserted at elevator_merge time
	 */
	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
}

static void part_round_stats_single(int cpu, struct hd_struct *part,
				    unsigned long now)
{
	if (now == part->stamp)
		return;

	if (part->in_flight) {
		__part_stat_add(cpu, part, time_in_queue,
				part->in_flight * (now - part->stamp));
		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
	}
	part->stamp = now;
}

/**
 * part_round_stats() - Round off the performance stats on a struct disk_stats.
 * @cpu: cpu number for stats access
 * @part: target partition
 *
 * The average IO queue length and utilisation statistics are maintained
 * by observing the current state of the queue length and the amount of
 * time it has been in this state for.
 *
 * Normally, that accounting is done on IO completion, but that can result
 * in more than a second's worth of IO being accounted for within any one
 * second, leading to >100% utilisation.  To deal with that, we call this
 * function to do a round-off before returning the results when reading
 * /proc/diskstats.  This accounts immediately for all queue usage up to
 * the current jiffies and restarts the counters again.
 */
void part_round_stats(int cpu, struct hd_struct *part)
{
	unsigned long now = jiffies;

	if (part->partno)
		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
	part_round_stats_single(cpu, part, now);
}
EXPORT_SYMBOL_GPL(part_round_stats);

/*
 * queue lock must be held
 */
void __blk_put_request(struct request_queue *q, struct request *req)
{
	if (unlikely(!q))
		return;
	if (unlikely(--req->ref_count))
		return;

	elv_completed_request(q, req);

	/* this is a bio leak */
	WARN_ON(req->bio != NULL);

	/*
	 * Request may not have originated from ll_rw_blk. if not,
	 * it didn't come out of our reserved rq pools
	 */
	if (req->cmd_flags & REQ_ALLOCED) {
		int rw = rq_data_dir(req);
		int priv = req->cmd_flags & REQ_ELVPRIV;

		BUG_ON(!list_empty(&req->queuelist));
		BUG_ON(!hlist_unhashed(&req->hash));

		blk_free_request(q, req);
		freed_request(q, rw, priv);
	}
}
EXPORT_SYMBOL_GPL(__blk_put_request);

void blk_put_request(struct request *req)
{
	unsigned long flags;
	struct request_queue *q = req->q;

	spin_lock_irqsave(q->queue_lock, flags);
	__blk_put_request(q, req);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_put_request);

void init_request_from_bio(struct request *req, struct bio *bio)
{
	req->cpu = bio->bi_comp_cpu;
	req->cmd_type = REQ_TYPE_FS;

	/*
	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
	 */
	if (bio_rw_ahead(bio))
		req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
				   REQ_FAILFAST_DRIVER);
	if (bio_failfast_dev(bio))
		req->cmd_flags |= REQ_FAILFAST_DEV;
	if (bio_failfast_transport(bio))
		req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
	if (bio_failfast_driver(bio))
		req->cmd_flags |= REQ_FAILFAST_DRIVER;

	/*
	 * REQ_BARRIER implies no merging, but lets make it explicit
	 */
	if (unlikely(bio_discard(bio))) {
		req->cmd_flags |= REQ_DISCARD;
		if (bio_barrier(bio))
			req->cmd_flags |= REQ_SOFTBARRIER;
		req->q->prepare_discard_fn(req->q, req);
	} else if (unlikely(bio_barrier(bio)))
		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);

	if (bio_sync(bio))
		req->cmd_flags |= REQ_RW_SYNC;
	if (bio_unplug(bio))
		req->cmd_flags |= REQ_UNPLUG;
	if (bio_rw_meta(bio))
		req->cmd_flags |= REQ_RW_META;

	req->errors = 0;
	req->hard_sector = req->sector = bio->bi_sector;
	req->ioprio = bio_prio(bio);
	req->start_time = jiffies;
	blk_rq_bio_prep(req->q, req, bio);
}

static int __make_request(struct request_queue *q, struct bio *bio)
{
	struct request *req;
	int el_ret, nr_sectors;
	const unsigned short prio = bio_prio(bio);
	const int sync = bio_sync(bio);
	const int unplug = bio_unplug(bio);
	int rw_flags;

	nr_sectors = bio_sectors(bio);

	/*
	 * low level driver can indicate that it wants pages above a
	 * certain limit bounced to low memory (ie for highmem, or even
	 * ISA dma in theory)
	 */
	blk_queue_bounce(q, &bio);

	spin_lock_irq(q->queue_lock);

	if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
		goto get_rq;

	el_ret = elv_merge(q, &req, bio);
	switch (el_ret) {
	case ELEVATOR_BACK_MERGE:
		BUG_ON(!rq_mergeable(req));

		if (!ll_back_merge_fn(q, req, bio))
			break;

		trace_block_bio_backmerge(q, bio);

		req->biotail->bi_next = bio;
		req->biotail = bio;
		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
		req->ioprio = ioprio_best(req->ioprio, prio);
		if (!blk_rq_cpu_valid(req))
			req->cpu = bio->bi_comp_cpu;
		drive_stat_acct(req, 0);
		if (!attempt_back_merge(q, req))
			elv_merged_request(q, req, el_ret);
		goto out;

	case ELEVATOR_FRONT_MERGE:
		BUG_ON(!rq_mergeable(req));

		if (!ll_front_merge_fn(q, req, bio))
			break;

		trace_block_bio_frontmerge(q, bio);

		bio->bi_next = req->bio;
		req->bio = bio;

		/*
		 * may not be valid. if the low level driver said
		 * it didn't need a bounce buffer then it better
		 * not touch req->buffer either...
		 */
		req->buffer = bio_data(bio);
		req->current_nr_sectors = bio_cur_sectors(bio);
		req->hard_cur_sectors = req->current_nr_sectors;
		req->sector = req->hard_sector = bio->bi_sector;
		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
		req->ioprio = ioprio_best(req->ioprio, prio);
		if (!blk_rq_cpu_valid(req))
			req->cpu = bio->bi_comp_cpu;
		drive_stat_acct(req, 0);
		if (!attempt_front_merge(q, req))
			elv_merged_request(q, req, el_ret);
		goto out;

	/* ELV_NO_MERGE: elevator says don't/can't merge. */
	default:
		;
	}

get_rq:
	/*
	 * This sync check and mask will be re-done in init_request_from_bio(),
	 * but we need to set it earlier to expose the sync flag to the
	 * rq allocator and io schedulers.
	 */
	rw_flags = bio_data_dir(bio);
	if (sync)
		rw_flags |= REQ_RW_SYNC;

	/*
	 * Grab a free request. This is might sleep but can not fail.
	 * Returns with the queue unlocked.
	 */
	req = get_request_wait(q, rw_flags, bio);

	/*
	 * After dropping the lock and possibly sleeping here, our request
	 * may now be mergeable after it had proven unmergeable (above).
	 * We don't worry about that case for efficiency. It won't happen
	 * often, and the elevators are able to handle it.
	 */
	init_request_from_bio(req, bio);

	spin_lock_irq(q->queue_lock);
	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
	    bio_flagged(bio, BIO_CPU_AFFINE))
		req->cpu = blk_cpu_to_group(smp_processor_id());
	if (!blk_queue_nonrot(q) && elv_queue_empty(q))
		blk_plug_device(q);
	add_request(q, req);
out:
	if (unplug || blk_queue_nonrot(q))
		__generic_unplug_device(q);
	spin_unlock_irq(q->queue_lock);
	return 0;
}

/*
 * If bio->bi_dev is a partition, remap the location
 */
static inline void blk_partition_remap(struct bio *bio)
{
	struct block_device *bdev = bio->bi_bdev;

	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
		struct hd_struct *p = bdev->bd_part;

		bio->bi_sector += p->start_sect;
		bio->bi_bdev = bdev->bd_contains;

		trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
				    bdev->bd_dev, bio->bi_sector,
				    bio->bi_sector - p->start_sect);
	}
}

static void handle_bad_sector(struct bio *bio)
{
	char b[BDEVNAME_SIZE];

	printk(KERN_INFO "attempt to access beyond end of device\n");
	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
			bdevname(bio->bi_bdev, b),
			bio->bi_rw,
			(unsigned long long)bio->bi_sector + bio_sectors(bio),
			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));

	set_bit(BIO_EOF, &bio->bi_flags);
}

#ifdef CONFIG_FAIL_MAKE_REQUEST

static DECLARE_FAULT_ATTR(fail_make_request);

static int __init setup_fail_make_request(char *str)
{
	return setup_fault_attr(&fail_make_request, str);
}
__setup("fail_make_request=", setup_fail_make_request);

static int should_fail_request(struct bio *bio)
{
	struct hd_struct *part = bio->bi_bdev->bd_part;

	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
		return should_fail(&fail_make_request, bio->bi_size);

	return 0;
}

static int __init fail_make_request_debugfs(void)
{
	return init_fault_attr_dentries(&fail_make_request,
					"fail_make_request");
}

late_initcall(fail_make_request_debugfs);

#else /* CONFIG_FAIL_MAKE_REQUEST */

static inline int should_fail_request(struct bio *bio)
{
	return 0;
}

#endif /* CONFIG_FAIL_MAKE_REQUEST */

/*
 * Check whether this bio extends beyond the end of the device.
 */
static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
{
	sector_t maxsector;

	if (!nr_sectors)
		return 0;

	/* Test device or partition size, when known. */
	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
	if (maxsector) {
		sector_t sector = bio->bi_sector;

		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
			/*
			 * This may well happen - the kernel calls bread()
			 * without checking the size of the device, e.g., when
			 * mounting a device.
			 */
			handle_bad_sector(bio);
			return 1;
		}
	}

	return 0;
}

/**
 * generic_make_request - hand a buffer to its device driver for I/O
 * @bio:  The bio describing the location in memory and on the device.
 *
 * generic_make_request() is used to make I/O requests of block
 * devices. It is passed a &struct bio, which describes the I/O that needs
 * to be done.
 *
 * generic_make_request() does not return any status.  The
 * success/failure status of the request, along with notification of
 * completion, is delivered asynchronously through the bio->bi_end_io
 * function described (one day) else where.
 *
 * The caller of generic_make_request must make sure that bi_io_vec
 * are set to describe the memory buffer, and that bi_dev and bi_sector are
 * set to describe the device address, and the
 * bi_end_io and optionally bi_private are set to describe how
 * completion notification should be signaled.
 *
 * generic_make_request and the drivers it calls may use bi_next if this
 * bio happens to be merged with someone else, and may change bi_dev and
 * bi_sector for remaps as it sees fit.  So the values of these fields
 * should NOT be depended on after the call to generic_make_request.
 */
static inline void __generic_make_request(struct bio *bio)
{
	struct request_queue *q;
	sector_t old_sector;
	int ret, nr_sectors = bio_sectors(bio);
	dev_t old_dev;
	int err = -EIO;

	might_sleep();

	if (bio_check_eod(bio, nr_sectors))
		goto end_io;

	/*
	 * Resolve the mapping until finished. (drivers are
	 * still free to implement/resolve their own stacking
	 * by explicitly returning 0)
	 *
	 * NOTE: we don't repeat the blk_size check for each new device.
	 * Stacking drivers are expected to know what they are doing.
	 */
	old_sector = -1;
	old_dev = 0;
	do {
		char b[BDEVNAME_SIZE];

		q = bdev_get_queue(bio->bi_bdev);
		if (unlikely(!q)) {
			printk(KERN_ERR
			       "generic_make_request: Trying to access "
				"nonexistent block-device %s (%Lu)\n",
				bdevname(bio->bi_bdev, b),
				(long long) bio->bi_sector);
			goto end_io;
		}

		if (unlikely(nr_sectors > q->max_hw_sectors)) {
			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
				bdevname(bio->bi_bdev, b),
				bio_sectors(bio),
				q->max_hw_sectors);
			goto end_io;
		}

		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
			goto end_io;

		if (should_fail_request(bio))
			goto end_io;

		/*
		 * If this device has partitions, remap block n
		 * of partition p to block n+start(p) of the disk.
		 */
		blk_partition_remap(bio);

		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
			goto end_io;

		if (old_sector != -1)
			trace_block_remap(q, bio, old_dev, bio->bi_sector,
					    old_sector);

		trace_block_bio_queue(q, bio);

		old_sector = bio->bi_sector;
		old_dev = bio->bi_bdev->bd_dev;

		if (bio_check_eod(bio, nr_sectors))
			goto end_io;

		if (bio_discard(bio) && !q->prepare_discard_fn) {
			err = -EOPNOTSUPP;
			goto end_io;
		}
		if (bio_barrier(bio) && bio_has_data(bio) &&
		    (q->next_ordered == QUEUE_ORDERED_NONE)) {
			err = -EOPNOTSUPP;
			goto end_io;
		}

		ret = q->make_request_fn(q, bio);
	} while (ret);

	return;

end_io:
	bio_endio(bio, err);
}

/*
 * We only want one ->make_request_fn to be active at a time,
 * else stack usage with stacked devices could be a problem.
 * So use current->bio_{list,tail} to keep a list of requests
 * submited by a make_request_fn function.
 * current->bio_tail is also used as a flag to say if
 * generic_make_request is currently active in this task or not.
 * If it is NULL, then no make_request is active.  If it is non-NULL,
 * then a make_request is active, and new requests should be added
 * at the tail
 */
void generic_make_request(struct bio *bio)
{
	if (current->bio_tail) {
		/* make_request is active */
		*(current->bio_tail) = bio;
		bio->bi_next = NULL;
		current->bio_tail = &bio->bi_next;
		return;
	}
	/* following loop may be a bit non-obvious, and so deserves some
	 * explanation.
	 * Before entering the loop, bio->bi_next is NULL (as all callers
	 * ensure that) so we have a list with a single bio.
	 * We pretend that we have just taken it off a longer list, so
	 * we assign bio_list to the next (which is NULL) and bio_tail
	 * to &bio_list, thus initialising the bio_list of new bios to be
	 * added.  __generic_make_request may indeed add some more bios
	 * through a recursive call to generic_make_request.  If it
	 * did, we find a non-NULL value in bio_list and re-enter the loop
	 * from the top.  In this case we really did just take the bio
	 * of the top of the list (no pretending) and so fixup bio_list and
	 * bio_tail or bi_next, and call into __generic_make_request again.
	 *
	 * The loop was structured like this to make only one call to
	 * __generic_make_request (which is important as it is large and
	 * inlined) and to keep the structure simple.
	 */
	BUG_ON(bio->bi_next);
	do {
		current->bio_list = bio->bi_next;
		if (bio->bi_next == NULL)
			current->bio_tail = &current->bio_list;
		else
			bio->bi_next = NULL;
		__generic_make_request(bio);
		bio = current->bio_list;
	} while (bio);
	current->bio_tail = NULL; /* deactivate */
}
EXPORT_SYMBOL(generic_make_request);

/**
 * submit_bio - submit a bio to the block device layer for I/O
 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 * @bio: The &struct bio which describes the I/O
 *
 * submit_bio() is very similar in purpose to generic_make_request(), and
 * uses that function to do most of the work. Both are fairly rough
 * interfaces; @bio must be presetup and ready for I/O.
 *
 */
void submit_bio(int rw, struct bio *bio)
{
	int count = bio_sectors(bio);

	bio->bi_rw |= rw;

	/*
	 * If it's a regular read/write or a barrier with data attached,
	 * go through the normal accounting stuff before submission.
	 */
	if (bio_has_data(bio)) {
		if (rw & WRITE) {
			count_vm_events(PGPGOUT, count);
		} else {
			task_io_account_read(bio->bi_size);
			count_vm_events(PGPGIN, count);
		}

		if (unlikely(block_dump)) {
			char b[BDEVNAME_SIZE];
			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
			current->comm, task_pid_nr(current),
				(rw & WRITE) ? "WRITE" : "READ",
				(unsigned long long)bio->bi_sector,
				bdevname(bio->bi_bdev, b));
		}
	}

	generic_make_request(bio);
}
EXPORT_SYMBOL(submit_bio);

/**
 * blk_rq_check_limits - Helper function to check a request for the queue limit
 * @q:  the queue
 * @rq: the request being checked
 *
 * Description:
 *    @rq may have been made based on weaker limitations of upper-level queues
 *    in request stacking drivers, and it may violate the limitation of @q.
 *    Since the block layer and the underlying device driver trust @rq
 *    after it is inserted to @q, it should be checked against @q before
 *    the insertion using this generic function.
 *
 *    This function should also be useful for request stacking drivers
 *    in some cases below, so export this fuction.
 *    Request stacking drivers like request-based dm may change the queue
 *    limits while requests are in the queue (e.g. dm's table swapping).
 *    Such request stacking drivers should check those requests agaist
 *    the new queue limits again when they dispatch those requests,
 *    although such checkings are also done against the old queue limits
 *    when submitting requests.
 */
int blk_rq_check_limits(struct request_queue *q, struct request *rq)
{
	if (rq->nr_sectors > q->max_sectors ||
	    rq->data_len > q->max_hw_sectors << 9) {
		printk(KERN_ERR "%s: over max size limit.\n", __func__);
		return -EIO;
	}

	/*
	 * queue's settings related to segment counting like q->bounce_pfn
	 * may differ from that of other stacking queues.
	 * Recalculate it to check the request correctly on this queue's
	 * limitation.
	 */
	blk_recalc_rq_segments(rq);
	if (rq->nr_phys_segments > q->max_phys_segments ||
	    rq->nr_phys_segments > q->max_hw_segments) {
		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
		return -EIO;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(blk_rq_check_limits);

/**
 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
 * @q:  the queue to submit the request
 * @rq: the request being queued
 */
int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
{
	unsigned long flags;

	if (blk_rq_check_limits(q, rq))
		return -EIO;

#ifdef CONFIG_FAIL_MAKE_REQUEST
	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
		return -EIO;
#endif

	spin_lock_irqsave(q->queue_lock, flags);

	/*
	 * Submitting request must be dequeued before calling this function
	 * because it will be linked to another request_queue
	 */
	BUG_ON(blk_queued_rq(rq));

	drive_stat_acct(rq, 1);
	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);

	spin_unlock_irqrestore(q->queue_lock, flags);

	return 0;
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);

/**
 * blkdev_dequeue_request - dequeue request and start timeout timer
 * @req: request to dequeue
 *
 * Dequeue @req and start timeout timer on it.  This hands off the
 * request to the driver.
 *
 * Block internal functions which don't want to start timer should
 * call elv_dequeue_request().
 */
void blkdev_dequeue_request(struct request *req)
{
	elv_dequeue_request(req->q, req);

	/*
	 * We are now handing the request to the hardware, add the
	 * timeout handler.
	 */
	blk_add_timer(req);
}
EXPORT_SYMBOL(blkdev_dequeue_request);

static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
	struct gendisk *disk = req->rq_disk;

	if (!disk || !blk_do_io_stat(disk->queue))
		return;

	if (blk_fs_request(req)) {
		const int rw = rq_data_dir(req);
		struct hd_struct *part;
		int cpu;

		cpu = part_stat_lock();
		part = disk_map_sector_rcu(req->rq_disk, req->sector);
		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
		part_stat_unlock();
	}
}

static void blk_account_io_done(struct request *req)
{
	struct gendisk *disk = req->rq_disk;

	if (!disk || !blk_do_io_stat(disk->queue))
		return;

	/*
	 * Account IO completion.  bar_rq isn't accounted as a normal
	 * IO on queueing nor completion.  Accounting the containing
	 * request is enough.
	 */
	if (blk_fs_request(req) && req != &req->q->bar_rq) {
		unsigned long duration = jiffies - req->start_time;
		const int rw = rq_data_dir(req);
		struct hd_struct *part;
		int cpu;

		cpu = part_stat_lock();
		part = disk_map_sector_rcu(disk, req->sector);

		part_stat_inc(cpu, part, ios[rw]);
		part_stat_add(cpu, part, ticks[rw], duration);
		part_round_stats(cpu, part);
		part_dec_in_flight(part);

		part_stat_unlock();
	}
}

/**
 * __end_that_request_first - end I/O on a request
 * @req:      the request being processed
 * @error:    %0 for success, < %0 for error
 * @nr_bytes: number of bytes to complete
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @req, and sets it up
 *     for the next range of segments (if any) in the cluster.
 *
 * Return:
 *     %0 - we are done with this request, call end_that_request_last()
 *     %1 - still buffers pending for this request
 **/
static int __end_that_request_first(struct request *req, int error,
				    int nr_bytes)
{
	int total_bytes, bio_nbytes, next_idx = 0;
	struct bio *bio;

	trace_block_rq_complete(req->q, req);

	/*
	 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
	 * sense key with us all the way through
	 */
	if (!blk_pc_request(req))
		req->errors = 0;

	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
				req->rq_disk ? req->rq_disk->disk_name : "?",
				(unsigned long long)req->sector);
	}

	blk_account_io_completion(req, nr_bytes);

	total_bytes = bio_nbytes = 0;
	while ((bio = req->bio) != NULL) {
		int nbytes;

		if (nr_bytes >= bio->bi_size) {
			req->bio = bio->bi_next;
			nbytes = bio->bi_size;
			req_bio_endio(req, bio, nbytes, error);
			next_idx = 0;
			bio_nbytes = 0;
		} else {
			int idx = bio->bi_idx + next_idx;

			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
				blk_dump_rq_flags(req, "__end_that");
				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
				       __func__, bio->bi_idx, bio->bi_vcnt);
				break;
			}

			nbytes = bio_iovec_idx(bio, idx)->bv_len;
			BIO_BUG_ON(nbytes > bio->bi_size);

			/*
			 * not a complete bvec done
			 */
			if (unlikely(nbytes > nr_bytes)) {
				bio_nbytes += nr_bytes;
				total_bytes += nr_bytes;
				break;
			}

			/*
			 * advance to the next vector
			 */
			next_idx++;
			bio_nbytes += nbytes;
		}

		total_bytes += nbytes;
		nr_bytes -= nbytes;

		bio = req->bio;
		if (bio) {
			/*
			 * end more in this run, or just return 'not-done'
			 */
			if (unlikely(nr_bytes <= 0))
				break;
		}
	}

	/*
	 * completely done
	 */
	if (!req->bio)
		return 0;

	/*
	 * if the request wasn't completed, update state
	 */
	if (bio_nbytes) {
		req_bio_endio(req, bio, bio_nbytes, error);
		bio->bi_idx += next_idx;
		bio_iovec(bio)->bv_offset += nr_bytes;
		bio_iovec(bio)->bv_len -= nr_bytes;
	}

	blk_recalc_rq_sectors(req, total_bytes >> 9);
	blk_recalc_rq_segments(req);
	return 1;
}

/*
 * queue lock must be held
 */
static void end_that_request_last(struct request *req, int error)
{
	if (blk_rq_tagged(req))
		blk_queue_end_tag(req->q, req);

	if (blk_queued_rq(req))
		elv_dequeue_request(req->q, req);

	if (unlikely(laptop_mode) && blk_fs_request(req))
		laptop_io_completion();

	blk_delete_timer(req);

	blk_account_io_done(req);

	if (req->end_io)
		req->end_io(req, error);
	else {
		if (blk_bidi_rq(req))
			__blk_put_request(req->next_rq->q, req->next_rq);

		__blk_put_request(req->q, req);
	}
}

/**
 * blk_rq_bytes - Returns bytes left to complete in the entire request
 * @rq: the request being processed
 **/
unsigned int blk_rq_bytes(struct request *rq)
{
	if (blk_fs_request(rq))
		return rq->hard_nr_sectors << 9;

	return rq->data_len;
}
EXPORT_SYMBOL_GPL(blk_rq_bytes);

/**
 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
 * @rq: the request being processed
 **/
unsigned int blk_rq_cur_bytes(struct request *rq)
{
	if (blk_fs_request(rq))
		return rq->current_nr_sectors << 9;

	if (rq->bio)
		return rq->bio->bi_size;

	return rq->data_len;
}
EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);

/**
 * end_request - end I/O on the current segment of the request
 * @req:	the request being processed
 * @uptodate:	error value or %0/%1 uptodate flag
 *
 * Description:
 *     Ends I/O on the current segment of a request. If that is the only
 *     remaining segment, the request is also completed and freed.
 *
 *     This is a remnant of how older block drivers handled I/O completions.
 *     Modern drivers typically end I/O on the full request in one go, unless
 *     they have a residual value to account for. For that case this function
 *     isn't really useful, unless the residual just happens to be the
 *     full current segment. In other words, don't use this function in new
 *     code. Use blk_end_request() or __blk_end_request() to end a request.
 **/
void end_request(struct request *req, int uptodate)
{
	int error = 0;

	if (uptodate <= 0)
		error = uptodate ? uptodate : -EIO;

	__blk_end_request(req, error, req->hard_cur_sectors << 9);
}
EXPORT_SYMBOL(end_request);

static int end_that_request_data(struct request *rq, int error,
				 unsigned int nr_bytes, unsigned int bidi_bytes)
{
	if (rq->bio) {
		if (__end_that_request_first(rq, error, nr_bytes))
			return 1;

		/* Bidi request must be completed as a whole */
		if (blk_bidi_rq(rq) &&
		    __end_that_request_first(rq->next_rq, error, bidi_bytes))
			return 1;
	}

	return 0;
}

/**
 * blk_end_io - Generic end_io function to complete a request.
 * @rq:           the request being processed
 * @error:        %0 for success, < %0 for error
 * @nr_bytes:     number of bytes to complete @rq
 * @bidi_bytes:   number of bytes to complete @rq->next_rq
 * @drv_callback: function called between completion of bios in the request
 *                and completion of the request.
 *                If the callback returns non %0, this helper returns without
 *                completion of the request.
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
 *     If @rq has leftover, sets it up for the next range of segments.
 *
 * Return:
 *     %0 - we are done with this request
 *     %1 - this request is not freed yet, it still has pending buffers.
 **/
static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
		      unsigned int bidi_bytes,
		      int (drv_callback)(struct request *))
{
	struct request_queue *q = rq->q;
	unsigned long flags = 0UL;

	if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
		return 1;

	/* Special feature for tricky drivers */
	if (drv_callback && drv_callback(rq))
		return 1;

	add_disk_randomness(rq->rq_disk);

	spin_lock_irqsave(q->queue_lock, flags);
	end_that_request_last(rq, error);
	spin_unlock_irqrestore(q->queue_lock, flags);

	return 0;
}

/**
 * blk_end_request - Helper function for drivers to complete the request.
 * @rq:       the request being processed
 * @error:    %0 for success, < %0 for error
 * @nr_bytes: number of bytes to complete
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq.
 *     If @rq has leftover, sets it up for the next range of segments.
 *
 * Return:
 *     %0 - we are done with this request
 *     %1 - still buffers pending for this request
 **/
int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
{
	return blk_end_io(rq, error, nr_bytes, 0, NULL);
}
EXPORT_SYMBOL_GPL(blk_end_request);

/**
 * __blk_end_request - Helper function for drivers to complete the request.
 * @rq:       the request being processed
 * @error:    %0 for success, < %0 for error
 * @nr_bytes: number of bytes to complete
 *
 * Description:
 *     Must be called with queue lock held unlike blk_end_request().
 *
 * Return:
 *     %0 - we are done with this request
 *     %1 - still buffers pending for this request
 **/
int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
{
	if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
		return 1;

	add_disk_randomness(rq->rq_disk);

	end_that_request_last(rq, error);

	return 0;
}
EXPORT_SYMBOL_GPL(__blk_end_request);

/**
 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
 * @rq:         the bidi request being processed
 * @error:      %0 for success, < %0 for error
 * @nr_bytes:   number of bytes to complete @rq
 * @bidi_bytes: number of bytes to complete @rq->next_rq
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
 *
 * Return:
 *     %0 - we are done with this request
 *     %1 - still buffers pending for this request
 **/
int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
			 unsigned int bidi_bytes)
{
	return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
}
EXPORT_SYMBOL_GPL(blk_end_bidi_request);

/**
 * blk_update_request - Special helper function for request stacking drivers
 * @rq:           the request being processed
 * @error:        %0 for success, < %0 for error
 * @nr_bytes:     number of bytes to complete @rq
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq, but doesn't complete
 *     the request structure even if @rq doesn't have leftover.
 *     If @rq has leftover, sets it up for the next range of segments.
 *
 *     This special helper function is only for request stacking drivers
 *     (e.g. request-based dm) so that they can handle partial completion.
 *     Actual device drivers should use blk_end_request instead.
 */
void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
{
	if (!end_that_request_data(rq, error, nr_bytes, 0)) {
		/*
		 * These members are not updated in end_that_request_data()
		 * when all bios are completed.
		 * Update them so that the request stacking driver can find
		 * how many bytes remain in the request later.
		 */
		rq->nr_sectors = rq->hard_nr_sectors = 0;
		rq->current_nr_sectors = rq->hard_cur_sectors = 0;
	}
}
EXPORT_SYMBOL_GPL(blk_update_request);

/**
 * blk_end_request_callback - Special helper function for tricky drivers
 * @rq:           the request being processed
 * @error:        %0 for success, < %0 for error
 * @nr_bytes:     number of bytes to complete
 * @drv_callback: function called between completion of bios in the request
 *                and completion of the request.
 *                If the callback returns non %0, this helper returns without
 *                completion of the request.
 *
 * Description:
 *     Ends I/O on a number of bytes attached to @rq.
 *     If @rq has leftover, sets it up for the next range of segments.
 *
 *     This special helper function is used only for existing tricky drivers.
 *     (e.g. cdrom_newpc_intr() of ide-cd)
 *     This interface will be removed when such drivers are rewritten.
 *     Don't use this interface in other places anymore.
 *
 * Return:
 *     %0 - we are done with this request
 *     %1 - this request is not freed yet.
 *          this request still has pending buffers or
 *          the driver doesn't want to finish this request yet.
 **/
int blk_end_request_callback(struct request *rq, int error,
			     unsigned int nr_bytes,
			     int (drv_callback)(struct request *))
{
	return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
}
EXPORT_SYMBOL_GPL(blk_end_request_callback);

void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
		     struct bio *bio)
{
	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
	   we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
	rq->cmd_flags |= (bio->bi_rw & 3);

	if (bio_has_data(bio)) {
		rq->nr_phys_segments = bio_phys_segments(q, bio);
		rq->buffer = bio_data(bio);
	}
	rq->current_nr_sectors = bio_cur_sectors(bio);
	rq->hard_cur_sectors = rq->current_nr_sectors;
	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
	rq->data_len = bio->bi_size;

	rq->bio = rq->biotail = bio;

	if (bio->bi_bdev)
		rq->rq_disk = bio->bi_bdev->bd_disk;
}

/**
 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
 * @q : the queue of the device being checked
 *
 * Description:
 *    Check if underlying low-level drivers of a device are busy.
 *    If the drivers want to export their busy state, they must set own
 *    exporting function using blk_queue_lld_busy() first.
 *
 *    Basically, this function is used only by request stacking drivers
 *    to stop dispatching requests to underlying devices when underlying
 *    devices are busy.  This behavior helps more I/O merging on the queue
 *    of the request stacking driver and prevents I/O throughput regression
 *    on burst I/O load.
 *
 * Return:
 *    0 - Not busy (The request stacking driver should dispatch request)
 *    1 - Busy (The request stacking driver should stop dispatching request)
 */
int blk_lld_busy(struct request_queue *q)
{
	if (q->lld_busy_fn)
		return q->lld_busy_fn(q);

	return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);

int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
{
	return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);

int __init blk_dev_init(void)
{
	kblockd_workqueue = create_workqueue("kblockd");
	if (!kblockd_workqueue)
		panic("Failed to create kblockd\n");

	request_cachep = kmem_cache_create("blkdev_requests",
			sizeof(struct request), 0, SLAB_PANIC, NULL);

	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);

	return 0;
}