summaryrefslogtreecommitdiff
path: root/arch/x86/mm/mem_encrypt_identity.c
blob: 3f0abb4033403ba46f220a723368540d61b55d6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// SPDX-License-Identifier: GPL-2.0-only
/*
 * AMD Memory Encryption Support
 *
 * Copyright (C) 2016 Advanced Micro Devices, Inc.
 *
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 */

#define DISABLE_BRANCH_PROFILING

/*
 * Since we're dealing with identity mappings, physical and virtual
 * addresses are the same, so override these defines which are ultimately
 * used by the headers in misc.h.
 */
#define __pa(x)  ((unsigned long)(x))
#define __va(x)  ((void *)((unsigned long)(x)))

/*
 * Special hack: we have to be careful, because no indirections are
 * allowed here, and paravirt_ops is a kind of one. As it will only run in
 * baremetal anyway, we just keep it from happening. (This list needs to
 * be extended when new paravirt and debugging variants are added.)
 */
#undef CONFIG_PARAVIRT
#undef CONFIG_PARAVIRT_XXL
#undef CONFIG_PARAVIRT_SPINLOCKS

/*
 * This code runs before CPU feature bits are set. By default, the
 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
 * is provided to handle this situation and, instead, use a variable that
 * has been set by the early boot code.
 */
#define USE_EARLY_PGTABLE_L5

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mem_encrypt.h>
#include <linux/cc_platform.h>

#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cmdline.h>

#include "mm_internal.h"

#define PGD_FLAGS		_KERNPG_TABLE_NOENC
#define P4D_FLAGS		_KERNPG_TABLE_NOENC
#define PUD_FLAGS		_KERNPG_TABLE_NOENC
#define PMD_FLAGS		_KERNPG_TABLE_NOENC

#define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)

#define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
#define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
				 (_PAGE_PAT_LARGE | _PAGE_PWT))

#define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)

#define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)

#define PTE_FLAGS_DEC		PTE_FLAGS
#define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
				 (_PAGE_PAT | _PAGE_PWT))

#define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)

struct sme_populate_pgd_data {
	void    *pgtable_area;
	pgd_t   *pgd;

	pmdval_t pmd_flags;
	pteval_t pte_flags;
	unsigned long paddr;

	unsigned long vaddr;
	unsigned long vaddr_end;
};

/*
 * This work area lives in the .init.scratch section, which lives outside of
 * the kernel proper. It is sized to hold the intermediate copy buffer and
 * more than enough pagetable pages.
 *
 * By using this section, the kernel can be encrypted in place and it
 * avoids any possibility of boot parameters or initramfs images being
 * placed such that the in-place encryption logic overwrites them.  This
 * section is 2MB aligned to allow for simple pagetable setup using only
 * PMD entries (see vmlinux.lds.S).
 */
static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");

static char sme_cmdline_arg[] __initdata = "mem_encrypt";
static char sme_cmdline_on[]  __initdata = "on";
static char sme_cmdline_off[] __initdata = "off";

static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
{
	unsigned long pgd_start, pgd_end, pgd_size;
	pgd_t *pgd_p;

	pgd_start = ppd->vaddr & PGDIR_MASK;
	pgd_end = ppd->vaddr_end & PGDIR_MASK;

	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);

	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);

	memset(pgd_p, 0, pgd_size);
}

static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
{
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;

	pgd = ppd->pgd + pgd_index(ppd->vaddr);
	if (pgd_none(*pgd)) {
		p4d = ppd->pgtable_area;
		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
	}

	p4d = p4d_offset(pgd, ppd->vaddr);
	if (p4d_none(*p4d)) {
		pud = ppd->pgtable_area;
		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
	}

	pud = pud_offset(p4d, ppd->vaddr);
	if (pud_none(*pud)) {
		pmd = ppd->pgtable_area;
		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
	}

	if (pud_large(*pud))
		return NULL;

	return pud;
}

static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = sme_prepare_pgd(ppd);
	if (!pud)
		return;

	pmd = pmd_offset(pud, ppd->vaddr);
	if (pmd_large(*pmd))
		return;

	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
}

static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
{
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pud = sme_prepare_pgd(ppd);
	if (!pud)
		return;

	pmd = pmd_offset(pud, ppd->vaddr);
	if (pmd_none(*pmd)) {
		pte = ppd->pgtable_area;
		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
	}

	if (pmd_large(*pmd))
		return;

	pte = pte_offset_map(pmd, ppd->vaddr);
	if (pte_none(*pte))
		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
}

static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
{
	while (ppd->vaddr < ppd->vaddr_end) {
		sme_populate_pgd_large(ppd);

		ppd->vaddr += PMD_PAGE_SIZE;
		ppd->paddr += PMD_PAGE_SIZE;
	}
}

static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
{
	while (ppd->vaddr < ppd->vaddr_end) {
		sme_populate_pgd(ppd);

		ppd->vaddr += PAGE_SIZE;
		ppd->paddr += PAGE_SIZE;
	}
}

static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
				   pmdval_t pmd_flags, pteval_t pte_flags)
{
	unsigned long vaddr_end;

	ppd->pmd_flags = pmd_flags;
	ppd->pte_flags = pte_flags;

	/* Save original end value since we modify the struct value */
	vaddr_end = ppd->vaddr_end;

	/* If start is not 2MB aligned, create PTE entries */
	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
	__sme_map_range_pte(ppd);

	/* Create PMD entries */
	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
	__sme_map_range_pmd(ppd);

	/* If end is not 2MB aligned, create PTE entries */
	ppd->vaddr_end = vaddr_end;
	__sme_map_range_pte(ppd);
}

static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
{
	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
}

static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
{
	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
}

static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
{
	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
}

static unsigned long __init sme_pgtable_calc(unsigned long len)
{
	unsigned long entries = 0, tables = 0;

	/*
	 * Perform a relatively simplistic calculation of the pagetable
	 * entries that are needed. Those mappings will be covered mostly
	 * by 2MB PMD entries so we can conservatively calculate the required
	 * number of P4D, PUD and PMD structures needed to perform the
	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
	 * would be needed for the start and end portion of the address range
	 * that fall outside of the 2MB alignment.  This results in, at most,
	 * two extra pages to hold PTE entries for each range that is mapped.
	 * Incrementing the count for each covers the case where the addresses
	 * cross entries.
	 */

	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
	if (PTRS_PER_P4D > 1)
		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;

	/*
	 * Now calculate the added pagetable structures needed to populate
	 * the new pagetables.
	 */

	if (PTRS_PER_P4D > 1)
		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;

	return entries + tables;
}

void __init sme_encrypt_kernel(struct boot_params *bp)
{
	unsigned long workarea_start, workarea_end, workarea_len;
	unsigned long execute_start, execute_end, execute_len;
	unsigned long kernel_start, kernel_end, kernel_len;
	unsigned long initrd_start, initrd_end, initrd_len;
	struct sme_populate_pgd_data ppd;
	unsigned long pgtable_area_len;
	unsigned long decrypted_base;

	/*
	 * This is early code, use an open coded check for SME instead of
	 * using cc_platform_has(). This eliminates worries about removing
	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
	 * function.
	 */
	if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
		return;

	/*
	 * Prepare for encrypting the kernel and initrd by building new
	 * pagetables with the necessary attributes needed to encrypt the
	 * kernel in place.
	 *
	 *   One range of virtual addresses will map the memory occupied
	 *   by the kernel and initrd as encrypted.
	 *
	 *   Another range of virtual addresses will map the memory occupied
	 *   by the kernel and initrd as decrypted and write-protected.
	 *
	 *     The use of write-protect attribute will prevent any of the
	 *     memory from being cached.
	 */

	/* Physical addresses gives us the identity mapped virtual addresses */
	kernel_start = __pa_symbol(_text);
	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
	kernel_len = kernel_end - kernel_start;

	initrd_start = 0;
	initrd_end = 0;
	initrd_len = 0;
#ifdef CONFIG_BLK_DEV_INITRD
	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
		     ((unsigned long)bp->ext_ramdisk_size << 32);
	if (initrd_len) {
		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
			       ((unsigned long)bp->ext_ramdisk_image << 32);
		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
		initrd_len = initrd_end - initrd_start;
	}
#endif

	/*
	 * We're running identity mapped, so we must obtain the address to the
	 * SME encryption workarea using rip-relative addressing.
	 */
	asm ("lea sme_workarea(%%rip), %0"
	     : "=r" (workarea_start)
	     : "p" (sme_workarea));

	/*
	 * Calculate required number of workarea bytes needed:
	 *   executable encryption area size:
	 *     stack page (PAGE_SIZE)
	 *     encryption routine page (PAGE_SIZE)
	 *     intermediate copy buffer (PMD_PAGE_SIZE)
	 *   pagetable structures for the encryption of the kernel
	 *   pagetable structures for workarea (in case not currently mapped)
	 */
	execute_start = workarea_start;
	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
	execute_len = execute_end - execute_start;

	/*
	 * One PGD for both encrypted and decrypted mappings and a set of
	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
	 */
	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
	if (initrd_len)
		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;

	/* PUDs and PMDs needed in the current pagetables for the workarea */
	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);

	/*
	 * The total workarea includes the executable encryption area and
	 * the pagetable area. The start of the workarea is already 2MB
	 * aligned, align the end of the workarea on a 2MB boundary so that
	 * we don't try to create/allocate PTE entries from the workarea
	 * before it is mapped.
	 */
	workarea_len = execute_len + pgtable_area_len;
	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);

	/*
	 * Set the address to the start of where newly created pagetable
	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
	 * structures are created when the workarea is added to the current
	 * pagetables and when the new encrypted and decrypted kernel
	 * mappings are populated.
	 */
	ppd.pgtable_area = (void *)execute_end;

	/*
	 * Make sure the current pagetable structure has entries for
	 * addressing the workarea.
	 */
	ppd.pgd = (pgd_t *)native_read_cr3_pa();
	ppd.paddr = workarea_start;
	ppd.vaddr = workarea_start;
	ppd.vaddr_end = workarea_end;
	sme_map_range_decrypted(&ppd);

	/* Flush the TLB - no globals so cr3 is enough */
	native_write_cr3(__native_read_cr3());

	/*
	 * A new pagetable structure is being built to allow for the kernel
	 * and initrd to be encrypted. It starts with an empty PGD that will
	 * then be populated with new PUDs and PMDs as the encrypted and
	 * decrypted kernel mappings are created.
	 */
	ppd.pgd = ppd.pgtable_area;
	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;

	/*
	 * A different PGD index/entry must be used to get different
	 * pagetable entries for the decrypted mapping. Choose the next
	 * PGD index and convert it to a virtual address to be used as
	 * the base of the mapping.
	 */
	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
	if (initrd_len) {
		unsigned long check_base;

		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
		decrypted_base = max(decrypted_base, check_base);
	}
	decrypted_base <<= PGDIR_SHIFT;

	/* Add encrypted kernel (identity) mappings */
	ppd.paddr = kernel_start;
	ppd.vaddr = kernel_start;
	ppd.vaddr_end = kernel_end;
	sme_map_range_encrypted(&ppd);

	/* Add decrypted, write-protected kernel (non-identity) mappings */
	ppd.paddr = kernel_start;
	ppd.vaddr = kernel_start + decrypted_base;
	ppd.vaddr_end = kernel_end + decrypted_base;
	sme_map_range_decrypted_wp(&ppd);

	if (initrd_len) {
		/* Add encrypted initrd (identity) mappings */
		ppd.paddr = initrd_start;
		ppd.vaddr = initrd_start;
		ppd.vaddr_end = initrd_end;
		sme_map_range_encrypted(&ppd);
		/*
		 * Add decrypted, write-protected initrd (non-identity) mappings
		 */
		ppd.paddr = initrd_start;
		ppd.vaddr = initrd_start + decrypted_base;
		ppd.vaddr_end = initrd_end + decrypted_base;
		sme_map_range_decrypted_wp(&ppd);
	}

	/* Add decrypted workarea mappings to both kernel mappings */
	ppd.paddr = workarea_start;
	ppd.vaddr = workarea_start;
	ppd.vaddr_end = workarea_end;
	sme_map_range_decrypted(&ppd);

	ppd.paddr = workarea_start;
	ppd.vaddr = workarea_start + decrypted_base;
	ppd.vaddr_end = workarea_end + decrypted_base;
	sme_map_range_decrypted(&ppd);

	/* Perform the encryption */
	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
			    kernel_len, workarea_start, (unsigned long)ppd.pgd);

	if (initrd_len)
		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
				    initrd_len, workarea_start,
				    (unsigned long)ppd.pgd);

	/*
	 * At this point we are running encrypted.  Remove the mappings for
	 * the decrypted areas - all that is needed for this is to remove
	 * the PGD entry/entries.
	 */
	ppd.vaddr = kernel_start + decrypted_base;
	ppd.vaddr_end = kernel_end + decrypted_base;
	sme_clear_pgd(&ppd);

	if (initrd_len) {
		ppd.vaddr = initrd_start + decrypted_base;
		ppd.vaddr_end = initrd_end + decrypted_base;
		sme_clear_pgd(&ppd);
	}

	ppd.vaddr = workarea_start + decrypted_base;
	ppd.vaddr_end = workarea_end + decrypted_base;
	sme_clear_pgd(&ppd);

	/* Flush the TLB - no globals so cr3 is enough */
	native_write_cr3(__native_read_cr3());
}

void __init sme_enable(struct boot_params *bp)
{
	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
	unsigned int eax, ebx, ecx, edx;
	unsigned long feature_mask;
	bool active_by_default;
	unsigned long me_mask;
	char buffer[16];
	u64 msr;

	/* Check for the SME/SEV support leaf */
	eax = 0x80000000;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	if (eax < 0x8000001f)
		return;

#define AMD_SME_BIT	BIT(0)
#define AMD_SEV_BIT	BIT(1)

	/*
	 * Check for the SME/SEV feature:
	 *   CPUID Fn8000_001F[EAX]
	 *   - Bit 0 - Secure Memory Encryption support
	 *   - Bit 1 - Secure Encrypted Virtualization support
	 *   CPUID Fn8000_001F[EBX]
	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
	 */
	eax = 0x8000001f;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	/* Check whether SEV or SME is supported */
	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
		return;

	me_mask = 1UL << (ebx & 0x3f);

	/* Check the SEV MSR whether SEV or SME is enabled */
	sev_status   = __rdmsr(MSR_AMD64_SEV);
	feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;

	/* Check if memory encryption is enabled */
	if (feature_mask == AMD_SME_BIT) {
		/*
		 * No SME if Hypervisor bit is set. This check is here to
		 * prevent a guest from trying to enable SME. For running as a
		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
		 * might be other hypervisors which emulate that MSR as non-zero
		 * or even pass it through to the guest.
		 * A malicious hypervisor can still trick a guest into this
		 * path, but there is no way to protect against that.
		 */
		eax = 1;
		ecx = 0;
		native_cpuid(&eax, &ebx, &ecx, &edx);
		if (ecx & BIT(31))
			return;

		/* For SME, check the SYSCFG MSR */
		msr = __rdmsr(MSR_AMD64_SYSCFG);
		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
			return;
	} else {
		/* SEV state cannot be controlled by a command line option */
		sme_me_mask = me_mask;
		physical_mask &= ~sme_me_mask;
		return;
	}

	/*
	 * Fixups have not been applied to phys_base yet and we're running
	 * identity mapped, so we must obtain the address to the SME command
	 * line argument data using rip-relative addressing.
	 */
	asm ("lea sme_cmdline_arg(%%rip), %0"
	     : "=r" (cmdline_arg)
	     : "p" (sme_cmdline_arg));
	asm ("lea sme_cmdline_on(%%rip), %0"
	     : "=r" (cmdline_on)
	     : "p" (sme_cmdline_on));
	asm ("lea sme_cmdline_off(%%rip), %0"
	     : "=r" (cmdline_off)
	     : "p" (sme_cmdline_off));

	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
		active_by_default = true;
	else
		active_by_default = false;

	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
				     ((u64)bp->ext_cmd_line_ptr << 32));

	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));

	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
		sme_me_mask = me_mask;
	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
		sme_me_mask = 0;
	else
		sme_me_mask = active_by_default ? me_mask : 0;

	physical_mask &= ~sme_me_mask;
}