summaryrefslogtreecommitdiff
path: root/arch/x86/mm/init.c
blob: bb44e9f2cc494e9ee44bf0ca8647e7dd2d20c2bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#include <linux/gfp.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>	/* for max_low_pfn */

#include <asm/cacheflush.h>
#include <asm/e820.h>
#include <asm/init.h>
#include <asm/page.h>
#include <asm/page_types.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <asm/proto.h>
#include <asm/dma.h>		/* for MAX_DMA_PFN */

unsigned long __initdata pgt_buf_start;
unsigned long __meminitdata pgt_buf_end;
unsigned long __meminitdata pgt_buf_top;

int after_bootmem;

int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
				= 1
#endif
;

struct map_range {
	unsigned long start;
	unsigned long end;
	unsigned page_size_mask;
};

static int page_size_mask;

static void __init probe_page_size_mask(void)
{
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
	/*
	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
	 * This will simplify cpa(), which otherwise needs to support splitting
	 * large pages into small in interrupt context, etc.
	 */
	if (direct_gbpages)
		page_size_mask |= 1 << PG_LEVEL_1G;
	if (cpu_has_pse)
		page_size_mask |= 1 << PG_LEVEL_2M;
#endif

	/* Enable PSE if available */
	if (cpu_has_pse)
		set_in_cr4(X86_CR4_PSE);

	/* Enable PGE if available */
	if (cpu_has_pge) {
		set_in_cr4(X86_CR4_PGE);
		__supported_pte_mask |= _PAGE_GLOBAL;
	}
}
void __init native_pagetable_reserve(u64 start, u64 end)
{
	memblock_reserve(start, end - start);
}

#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif

static int __meminit save_mr(struct map_range *mr, int nr_range,
			     unsigned long start_pfn, unsigned long end_pfn,
			     unsigned long page_size_mask)
{
	if (start_pfn < end_pfn) {
		if (nr_range >= NR_RANGE_MR)
			panic("run out of range for init_memory_mapping\n");
		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
		mr[nr_range].page_size_mask = page_size_mask;
		nr_range++;
	}

	return nr_range;
}

static int __meminit split_mem_range(struct map_range *mr, int nr_range,
				     unsigned long start,
				     unsigned long end)
{
	unsigned long start_pfn, end_pfn;
	unsigned long pos;
	int i;

	/* head if not big page alignment ? */
	start_pfn = start >> PAGE_SHIFT;
	pos = start_pfn << PAGE_SHIFT;
#ifdef CONFIG_X86_32
	/*
	 * Don't use a large page for the first 2/4MB of memory
	 * because there are often fixed size MTRRs in there
	 * and overlapping MTRRs into large pages can cause
	 * slowdowns.
	 */
	if (pos == 0)
		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
	else
		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
				 << (PMD_SHIFT - PAGE_SHIFT);
#else /* CONFIG_X86_64 */
	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
			<< (PMD_SHIFT - PAGE_SHIFT);
#endif
	if (end_pfn > (end >> PAGE_SHIFT))
		end_pfn = end >> PAGE_SHIFT;
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
		pos = end_pfn << PAGE_SHIFT;
	}

	/* big page (2M) range */
	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
			 << (PMD_SHIFT - PAGE_SHIFT);
#ifdef CONFIG_X86_32
	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
#else /* CONFIG_X86_64 */
	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
			 << (PUD_SHIFT - PAGE_SHIFT);
	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
#endif

	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
		pos = end_pfn << PAGE_SHIFT;
	}

#ifdef CONFIG_X86_64
	/* big page (1G) range */
	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
			 << (PUD_SHIFT - PAGE_SHIFT);
	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask &
				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
		pos = end_pfn << PAGE_SHIFT;
	}

	/* tail is not big page (1G) alignment */
	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
			 << (PMD_SHIFT - PAGE_SHIFT);
	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
		pos = end_pfn << PAGE_SHIFT;
	}
#endif

	/* tail is not big page (2M) alignment */
	start_pfn = pos>>PAGE_SHIFT;
	end_pfn = end>>PAGE_SHIFT;
	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);

	/* try to merge same page size and continuous */
	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
		unsigned long old_start;
		if (mr[i].end != mr[i+1].start ||
		    mr[i].page_size_mask != mr[i+1].page_size_mask)
			continue;
		/* move it */
		old_start = mr[i].start;
		memmove(&mr[i], &mr[i+1],
			(nr_range - 1 - i) * sizeof(struct map_range));
		mr[i--].start = old_start;
		nr_range--;
	}

	for (i = 0; i < nr_range; i++)
		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
				mr[i].start, mr[i].end - 1,
			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));

	return nr_range;
}

/*
 * First calculate space needed for kernel direct mapping page tables to cover
 * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
 * pages. Then find enough contiguous space for those page tables.
 */
static unsigned long __init calculate_table_space_size(unsigned long start, unsigned long end)
{
	int i;
	unsigned long puds = 0, pmds = 0, ptes = 0, tables;
	struct map_range mr[NR_RANGE_MR];
	int nr_range;

	memset(mr, 0, sizeof(mr));
	nr_range = 0;
	nr_range = split_mem_range(mr, nr_range, start, end);

	for (i = 0; i < nr_range; i++) {
		unsigned long range, extra;

		range = mr[i].end - mr[i].start;
		puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;

		if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
			extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
			pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
		} else {
			pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
		}

		if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
			extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
#ifdef CONFIG_X86_32
			extra += PMD_SIZE;
#endif
			ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
		} else {
			ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
		}
	}

	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);

#ifdef CONFIG_X86_32
	/* for fixmap */
	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
#endif

	return tables;
}

static unsigned long __init calculate_all_table_space_size(void)
{
	unsigned long start_pfn, end_pfn;
	unsigned long tables;
	int i;

	/* the ISA range is always mapped regardless of memory holes */
	tables = calculate_table_space_size(0, ISA_END_ADDRESS);

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
		u64 start = start_pfn << PAGE_SHIFT;
		u64 end = end_pfn << PAGE_SHIFT;

		if (end <= ISA_END_ADDRESS)
			continue;

		if (start < ISA_END_ADDRESS)
			start = ISA_END_ADDRESS;
#ifdef CONFIG_X86_32
		/* on 32 bit, we only map up to max_low_pfn */
		if ((start >> PAGE_SHIFT) >= max_low_pfn)
			continue;

		if ((end >> PAGE_SHIFT) > max_low_pfn)
			end = max_low_pfn << PAGE_SHIFT;
#endif
		tables += calculate_table_space_size(start, end);
	}

	return tables;
}

static void __init find_early_table_space(unsigned long start,
					  unsigned long good_end,
					  unsigned long tables)
{
	phys_addr_t base;

	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
	if (!base)
		panic("Cannot find space for the kernel page tables");

	pgt_buf_start = base >> PAGE_SHIFT;
	pgt_buf_end = pgt_buf_start;
	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}

static struct range pfn_mapped[E820_X_MAX];
static int nr_pfn_mapped;

static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
					     nr_pfn_mapped, start_pfn, end_pfn);
	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);

	max_pfn_mapped = max(max_pfn_mapped, end_pfn);

	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
		max_low_pfn_mapped = max(max_low_pfn_mapped,
					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}

bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	int i;

	for (i = 0; i < nr_pfn_mapped; i++)
		if ((start_pfn >= pfn_mapped[i].start) &&
		    (end_pfn <= pfn_mapped[i].end))
			return true;

	return false;
}

/*
 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 * This runs before bootmem is initialized and gets pages directly from
 * the physical memory. To access them they are temporarily mapped.
 */
unsigned long __init_refok init_memory_mapping(unsigned long start,
					       unsigned long end)
{
	struct map_range mr[NR_RANGE_MR];
	unsigned long ret = 0;
	int nr_range, i;

	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
	       start, end - 1);

	memset(mr, 0, sizeof(mr));
	nr_range = split_mem_range(mr, 0, start, end);

	for (i = 0; i < nr_range; i++)
		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
						   mr[i].page_size_mask);

#ifdef CONFIG_X86_32
	early_ioremap_page_table_range_init();

	load_cr3(swapper_pg_dir);
#endif

	__flush_tlb_all();

	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);

	return ret >> PAGE_SHIFT;
}

/*
 * Iterate through E820 memory map and create direct mappings for only E820_RAM
 * regions. We cannot simply create direct mappings for all pfns from
 * [0 to max_low_pfn) and [4GB to max_pfn) because of possible memory holes in
 * high addresses that cannot be marked as UC by fixed/variable range MTRRs.
 * Depending on the alignment of E820 ranges, this may possibly result in using
 * smaller size (i.e. 4K instead of 2M or 1G) page tables.
 */
static void __init init_all_memory_mapping(void)
{
	unsigned long start_pfn, end_pfn;
	int i;

	/* the ISA range is always mapped regardless of memory holes */
	init_memory_mapping(0, ISA_END_ADDRESS);

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
		u64 start = (u64)start_pfn << PAGE_SHIFT;
		u64 end = (u64)end_pfn << PAGE_SHIFT;

		if (end <= ISA_END_ADDRESS)
			continue;

		if (start < ISA_END_ADDRESS)
			start = ISA_END_ADDRESS;
#ifdef CONFIG_X86_32
		/* on 32 bit, we only map up to max_low_pfn */
		if ((start >> PAGE_SHIFT) >= max_low_pfn)
			continue;

		if ((end >> PAGE_SHIFT) > max_low_pfn)
			end = max_low_pfn << PAGE_SHIFT;
#endif
		init_memory_mapping(start, end);
	}

#ifdef CONFIG_X86_64
	if (max_pfn > max_low_pfn) {
		/* can we preseve max_low_pfn ?*/
		max_low_pfn = max_pfn;
	}
#endif
}

void __init init_mem_mapping(void)
{
	unsigned long tables, good_end, end;

	probe_page_size_mask();

	/*
	 * Find space for the kernel direct mapping tables.
	 *
	 * Later we should allocate these tables in the local node of the
	 * memory mapped. Unfortunately this is done currently before the
	 * nodes are discovered.
	 */
#ifdef CONFIG_X86_64
	end = max_pfn << PAGE_SHIFT;
	good_end = end;
#else
	end = max_low_pfn << PAGE_SHIFT;
	good_end = max_pfn_mapped << PAGE_SHIFT;
#endif
	tables = calculate_all_table_space_size();
	find_early_table_space(0, good_end, tables);
	printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx] prealloc\n",
		end - 1, pgt_buf_start << PAGE_SHIFT,
		(pgt_buf_top << PAGE_SHIFT) - 1);

	max_pfn_mapped = 0; /* will get exact value next */
	init_all_memory_mapping();

	/*
	 * Reserve the kernel pagetable pages we used (pgt_buf_start -
	 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
	 * so that they can be reused for other purposes.
	 *
	 * On native it just means calling memblock_reserve, on Xen it also
	 * means marking RW the pagetable pages that we allocated before
	 * but that haven't been used.
	 *
	 * In fact on xen we mark RO the whole range pgt_buf_start -
	 * pgt_buf_top, because we have to make sure that when
	 * init_memory_mapping reaches the pagetable pages area, it maps
	 * RO all the pagetable pages, including the ones that are beyond
	 * pgt_buf_end at that time.
	 */
	if (pgt_buf_end > pgt_buf_start) {
		printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx] final\n",
			end - 1, pgt_buf_start << PAGE_SHIFT,
			(pgt_buf_end << PAGE_SHIFT) - 1);
		x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
				PFN_PHYS(pgt_buf_end));
	}

	/* stop the wrong using */
	pgt_buf_top = 0;

	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
}

/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
 *
 * On x86, access has to be given to the first megabyte of ram because that area
 * contains bios code and data regions used by X and dosemu and similar apps.
 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 * mmio resources as well as potential bios/acpi data regions.
 */
int devmem_is_allowed(unsigned long pagenr)
{
	if (pagenr < 256)
		return 1;
	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
		return 0;
	if (!page_is_ram(pagenr))
		return 1;
	return 0;
}

void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
	unsigned long addr;
	unsigned long begin_aligned, end_aligned;

	/* Make sure boundaries are page aligned */
	begin_aligned = PAGE_ALIGN(begin);
	end_aligned   = end & PAGE_MASK;

	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
		begin = begin_aligned;
		end   = end_aligned;
	}

	if (begin >= end)
		return;

	addr = begin;

	/*
	 * If debugging page accesses then do not free this memory but
	 * mark them not present - any buggy init-section access will
	 * create a kernel page fault:
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
		begin, end - 1);
	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
	/*
	 * We just marked the kernel text read only above, now that
	 * we are going to free part of that, we need to make that
	 * writeable and non-executable first.
	 */
	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);

	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);

	for (; addr < end; addr += PAGE_SIZE) {
		ClearPageReserved(virt_to_page(addr));
		init_page_count(virt_to_page(addr));
		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
		free_page(addr);
		totalram_pages++;
	}
#endif
}

void free_initmem(void)
{
	free_init_pages("unused kernel memory",
			(unsigned long)(&__init_begin),
			(unsigned long)(&__init_end));
}

#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
	/*
	 * end could be not aligned, and We can not align that,
	 * decompresser could be confused by aligned initrd_end
	 * We already reserve the end partial page before in
	 *   - i386_start_kernel()
	 *   - x86_64_start_kernel()
	 *   - relocate_initrd()
	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
	 */
	free_init_pages("initrd memory", start, PAGE_ALIGN(end));
}
#endif

void __init zone_sizes_init(void)
{
	unsigned long max_zone_pfns[MAX_NR_ZONES];

	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));

#ifdef CONFIG_ZONE_DMA
	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
#endif
#ifdef CONFIG_ZONE_DMA32
	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
#endif
	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
#ifdef CONFIG_HIGHMEM
	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
#endif

	free_area_init_nodes(max_zone_pfns);
}