summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/sgx/main.c
blob: e5a37b6e9aa585df3a91abfef9b6231f61940363 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
// SPDX-License-Identifier: GPL-2.0
/*  Copyright(c) 2016-20 Intel Corporation. */

#include <linux/file.h>
#include <linux/freezer.h>
#include <linux/highmem.h>
#include <linux/kthread.h>
#include <linux/miscdevice.h>
#include <linux/node.h>
#include <linux/pagemap.h>
#include <linux/ratelimit.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <asm/sgx.h>
#include "driver.h"
#include "encl.h"
#include "encls.h"

struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
static int sgx_nr_epc_sections;
static struct task_struct *ksgxd_tsk;
static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
static DEFINE_XARRAY(sgx_epc_address_space);

/*
 * These variables are part of the state of the reclaimer, and must be accessed
 * with sgx_reclaimer_lock acquired.
 */
static LIST_HEAD(sgx_active_page_list);
static DEFINE_SPINLOCK(sgx_reclaimer_lock);

static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);

/* Nodes with one or more EPC sections. */
static nodemask_t sgx_numa_mask;

/*
 * Array with one list_head for each possible NUMA node.  Each
 * list contains all the sgx_epc_section's which are on that
 * node.
 */
static struct sgx_numa_node *sgx_numa_nodes;

static LIST_HEAD(sgx_dirty_page_list);

/*
 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
 * from the input list, and made available for the page allocator. SECS pages
 * prepending their children in the input list are left intact.
 *
 * Return 0 when sanitization was successful or kthread was stopped, and the
 * number of unsanitized pages otherwise.
 */
static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
{
	unsigned long left_dirty = 0;
	struct sgx_epc_page *page;
	LIST_HEAD(dirty);
	int ret;

	/* dirty_page_list is thread-local, no need for a lock: */
	while (!list_empty(dirty_page_list)) {
		if (kthread_should_stop())
			return 0;

		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);

		/*
		 * Checking page->poison without holding the node->lock
		 * is racy, but losing the race (i.e. poison is set just
		 * after the check) just means __eremove() will be uselessly
		 * called for a page that sgx_free_epc_page() will put onto
		 * the node->sgx_poison_page_list later.
		 */
		if (page->poison) {
			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
			struct sgx_numa_node *node = section->node;

			spin_lock(&node->lock);
			list_move(&page->list, &node->sgx_poison_page_list);
			spin_unlock(&node->lock);

			continue;
		}

		ret = __eremove(sgx_get_epc_virt_addr(page));
		if (!ret) {
			/*
			 * page is now sanitized.  Make it available via the SGX
			 * page allocator:
			 */
			list_del(&page->list);
			sgx_free_epc_page(page);
		} else {
			/* The page is not yet clean - move to the dirty list. */
			list_move_tail(&page->list, &dirty);
			left_dirty++;
		}

		cond_resched();
	}

	list_splice(&dirty, dirty_page_list);
	return left_dirty;
}

static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
{
	struct sgx_encl_page *page = epc_page->owner;
	struct sgx_encl *encl = page->encl;
	struct sgx_encl_mm *encl_mm;
	bool ret = true;
	int idx;

	idx = srcu_read_lock(&encl->srcu);

	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
		if (!mmget_not_zero(encl_mm->mm))
			continue;

		mmap_read_lock(encl_mm->mm);
		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
		mmap_read_unlock(encl_mm->mm);

		mmput_async(encl_mm->mm);

		if (!ret)
			break;
	}

	srcu_read_unlock(&encl->srcu, idx);

	if (!ret)
		return false;

	return true;
}

static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
{
	struct sgx_encl_page *page = epc_page->owner;
	unsigned long addr = page->desc & PAGE_MASK;
	struct sgx_encl *encl = page->encl;
	int ret;

	sgx_zap_enclave_ptes(encl, addr);

	mutex_lock(&encl->lock);

	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
	if (encls_failed(ret))
		ENCLS_WARN(ret, "EBLOCK");

	mutex_unlock(&encl->lock);
}

static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
			  struct sgx_backing *backing)
{
	struct sgx_pageinfo pginfo;
	int ret;

	pginfo.addr = 0;
	pginfo.secs = 0;

	pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
	pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
			  backing->pcmd_offset;

	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
	set_page_dirty(backing->pcmd);
	set_page_dirty(backing->contents);

	kunmap_local((void *)(unsigned long)(pginfo.metadata -
					      backing->pcmd_offset));
	kunmap_local((void *)(unsigned long)pginfo.contents);

	return ret;
}

void sgx_ipi_cb(void *info)
{
}

/*
 * Swap page to the regular memory transformed to the blocked state by using
 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
 *
 * The first trial just tries to write the page assuming that some other thread
 * has reset the count for threads inside the enclave by using ETRACK, and
 * previous thread count has been zeroed out. The second trial calls ETRACK
 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
 * which should be guaranteed the succeed.
 */
static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
			 struct sgx_backing *backing)
{
	struct sgx_encl_page *encl_page = epc_page->owner;
	struct sgx_encl *encl = encl_page->encl;
	struct sgx_va_page *va_page;
	unsigned int va_offset;
	void *va_slot;
	int ret;

	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;

	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
				   list);
	va_offset = sgx_alloc_va_slot(va_page);
	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
	if (sgx_va_page_full(va_page))
		list_move_tail(&va_page->list, &encl->va_pages);

	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
	if (ret == SGX_NOT_TRACKED) {
		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
		if (ret) {
			if (encls_failed(ret))
				ENCLS_WARN(ret, "ETRACK");
		}

		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
		if (ret == SGX_NOT_TRACKED) {
			/*
			 * Slow path, send IPIs to kick cpus out of the
			 * enclave.  Note, it's imperative that the cpu
			 * mask is generated *after* ETRACK, else we'll
			 * miss cpus that entered the enclave between
			 * generating the mask and incrementing epoch.
			 */
			on_each_cpu_mask(sgx_encl_cpumask(encl),
					 sgx_ipi_cb, NULL, 1);
			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
		}
	}

	if (ret) {
		if (encls_failed(ret))
			ENCLS_WARN(ret, "EWB");

		sgx_free_va_slot(va_page, va_offset);
	} else {
		encl_page->desc |= va_offset;
		encl_page->va_page = va_page;
	}
}

static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
				struct sgx_backing *backing)
{
	struct sgx_encl_page *encl_page = epc_page->owner;
	struct sgx_encl *encl = encl_page->encl;
	struct sgx_backing secs_backing;
	int ret;

	mutex_lock(&encl->lock);

	sgx_encl_ewb(epc_page, backing);
	encl_page->epc_page = NULL;
	encl->secs_child_cnt--;
	sgx_encl_put_backing(backing);

	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
					   &secs_backing);
		if (ret)
			goto out;

		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);

		sgx_encl_free_epc_page(encl->secs.epc_page);
		encl->secs.epc_page = NULL;

		sgx_encl_put_backing(&secs_backing);
	}

out:
	mutex_unlock(&encl->lock);
}

/*
 * Take a fixed number of pages from the head of the active page pool and
 * reclaim them to the enclave's private shmem files. Skip the pages, which have
 * been accessed since the last scan. Move those pages to the tail of active
 * page pool so that the pages get scanned in LRU like fashion.
 *
 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
 * problematic as it would increase the lock contention too much, which would
 * halt forward progress.
 */
static void sgx_reclaim_pages(void)
{
	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
	struct sgx_backing backing[SGX_NR_TO_SCAN];
	struct sgx_encl_page *encl_page;
	struct sgx_epc_page *epc_page;
	pgoff_t page_index;
	int cnt = 0;
	int ret;
	int i;

	spin_lock(&sgx_reclaimer_lock);
	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
		if (list_empty(&sgx_active_page_list))
			break;

		epc_page = list_first_entry(&sgx_active_page_list,
					    struct sgx_epc_page, list);
		list_del_init(&epc_page->list);
		encl_page = epc_page->owner;

		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
			chunk[cnt++] = epc_page;
		else
			/* The owner is freeing the page. No need to add the
			 * page back to the list of reclaimable pages.
			 */
			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
	}
	spin_unlock(&sgx_reclaimer_lock);

	for (i = 0; i < cnt; i++) {
		epc_page = chunk[i];
		encl_page = epc_page->owner;

		if (!sgx_reclaimer_age(epc_page))
			goto skip;

		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);

		mutex_lock(&encl_page->encl->lock);
		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
		if (ret) {
			mutex_unlock(&encl_page->encl->lock);
			goto skip;
		}

		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
		mutex_unlock(&encl_page->encl->lock);
		continue;

skip:
		spin_lock(&sgx_reclaimer_lock);
		list_add_tail(&epc_page->list, &sgx_active_page_list);
		spin_unlock(&sgx_reclaimer_lock);

		kref_put(&encl_page->encl->refcount, sgx_encl_release);

		chunk[i] = NULL;
	}

	for (i = 0; i < cnt; i++) {
		epc_page = chunk[i];
		if (epc_page)
			sgx_reclaimer_block(epc_page);
	}

	for (i = 0; i < cnt; i++) {
		epc_page = chunk[i];
		if (!epc_page)
			continue;

		encl_page = epc_page->owner;
		sgx_reclaimer_write(epc_page, &backing[i]);

		kref_put(&encl_page->encl->refcount, sgx_encl_release);
		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;

		sgx_free_epc_page(epc_page);
	}
}

static bool sgx_should_reclaim(unsigned long watermark)
{
	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
	       !list_empty(&sgx_active_page_list);
}

/*
 * sgx_reclaim_direct() should be called (without enclave's mutex held)
 * in locations where SGX memory resources might be low and might be
 * needed in order to make forward progress.
 */
void sgx_reclaim_direct(void)
{
	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
		sgx_reclaim_pages();
}

static int ksgxd(void *p)
{
	set_freezable();

	/*
	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
	 * required for SECS pages, whose child pages blocked EREMOVE.
	 */
	__sgx_sanitize_pages(&sgx_dirty_page_list);
	WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));

	while (!kthread_should_stop()) {
		if (try_to_freeze())
			continue;

		wait_event_freezable(ksgxd_waitq,
				     kthread_should_stop() ||
				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));

		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
			sgx_reclaim_pages();

		cond_resched();
	}

	return 0;
}

static bool __init sgx_page_reclaimer_init(void)
{
	struct task_struct *tsk;

	tsk = kthread_run(ksgxd, NULL, "ksgxd");
	if (IS_ERR(tsk))
		return false;

	ksgxd_tsk = tsk;

	return true;
}

bool current_is_ksgxd(void)
{
	return current == ksgxd_tsk;
}

static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
{
	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
	struct sgx_epc_page *page = NULL;

	spin_lock(&node->lock);

	if (list_empty(&node->free_page_list)) {
		spin_unlock(&node->lock);
		return NULL;
	}

	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
	list_del_init(&page->list);
	page->flags = 0;

	spin_unlock(&node->lock);
	atomic_long_dec(&sgx_nr_free_pages);

	return page;
}

/**
 * __sgx_alloc_epc_page() - Allocate an EPC page
 *
 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
 * from the NUMA node, where the caller is executing.
 *
 * Return:
 * - an EPC page:	A borrowed EPC pages were available.
 * - NULL:		Out of EPC pages.
 */
struct sgx_epc_page *__sgx_alloc_epc_page(void)
{
	struct sgx_epc_page *page;
	int nid_of_current = numa_node_id();
	int nid = nid_of_current;

	if (node_isset(nid_of_current, sgx_numa_mask)) {
		page = __sgx_alloc_epc_page_from_node(nid_of_current);
		if (page)
			return page;
	}

	/* Fall back to the non-local NUMA nodes: */
	while (true) {
		nid = next_node_in(nid, sgx_numa_mask);
		if (nid == nid_of_current)
			break;

		page = __sgx_alloc_epc_page_from_node(nid);
		if (page)
			return page;
	}

	return ERR_PTR(-ENOMEM);
}

/**
 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
 * @page:	EPC page
 *
 * Mark a page as reclaimable and add it to the active page list. Pages
 * are automatically removed from the active list when freed.
 */
void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
{
	spin_lock(&sgx_reclaimer_lock);
	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
	list_add_tail(&page->list, &sgx_active_page_list);
	spin_unlock(&sgx_reclaimer_lock);
}

/**
 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
 * @page:	EPC page
 *
 * Clear the reclaimable flag and remove the page from the active page list.
 *
 * Return:
 *   0 on success,
 *   -EBUSY if the page is in the process of being reclaimed
 */
int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
{
	spin_lock(&sgx_reclaimer_lock);
	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
		/* The page is being reclaimed. */
		if (list_empty(&page->list)) {
			spin_unlock(&sgx_reclaimer_lock);
			return -EBUSY;
		}

		list_del(&page->list);
		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
	}
	spin_unlock(&sgx_reclaimer_lock);

	return 0;
}

/**
 * sgx_alloc_epc_page() - Allocate an EPC page
 * @owner:	the owner of the EPC page
 * @reclaim:	reclaim pages if necessary
 *
 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
 * page is no longer needed it must be released with sgx_free_epc_page(). If
 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
 * mm's can be locked when @reclaim is set to true.
 *
 * Finally, wake up ksgxd when the number of pages goes below the watermark
 * before returning back to the caller.
 *
 * Return:
 *   an EPC page,
 *   -errno on error
 */
struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
{
	struct sgx_epc_page *page;

	for ( ; ; ) {
		page = __sgx_alloc_epc_page();
		if (!IS_ERR(page)) {
			page->owner = owner;
			break;
		}

		if (list_empty(&sgx_active_page_list))
			return ERR_PTR(-ENOMEM);

		if (!reclaim) {
			page = ERR_PTR(-EBUSY);
			break;
		}

		if (signal_pending(current)) {
			page = ERR_PTR(-ERESTARTSYS);
			break;
		}

		sgx_reclaim_pages();
		cond_resched();
	}

	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
		wake_up(&ksgxd_waitq);

	return page;
}

/**
 * sgx_free_epc_page() - Free an EPC page
 * @page:	an EPC page
 *
 * Put the EPC page back to the list of free pages. It's the caller's
 * responsibility to make sure that the page is in uninitialized state. In other
 * words, do EREMOVE, EWB or whatever operation is necessary before calling
 * this function.
 */
void sgx_free_epc_page(struct sgx_epc_page *page)
{
	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
	struct sgx_numa_node *node = section->node;

	spin_lock(&node->lock);

	page->owner = NULL;
	if (page->poison)
		list_add(&page->list, &node->sgx_poison_page_list);
	else
		list_add_tail(&page->list, &node->free_page_list);
	page->flags = SGX_EPC_PAGE_IS_FREE;

	spin_unlock(&node->lock);
	atomic_long_inc(&sgx_nr_free_pages);
}

static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
					 unsigned long index,
					 struct sgx_epc_section *section)
{
	unsigned long nr_pages = size >> PAGE_SHIFT;
	unsigned long i;

	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
	if (!section->virt_addr)
		return false;

	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
	if (!section->pages) {
		memunmap(section->virt_addr);
		return false;
	}

	section->phys_addr = phys_addr;
	xa_store_range(&sgx_epc_address_space, section->phys_addr,
		       phys_addr + size - 1, section, GFP_KERNEL);

	for (i = 0; i < nr_pages; i++) {
		section->pages[i].section = index;
		section->pages[i].flags = 0;
		section->pages[i].owner = NULL;
		section->pages[i].poison = 0;
		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
	}

	return true;
}

bool arch_is_platform_page(u64 paddr)
{
	return !!xa_load(&sgx_epc_address_space, paddr);
}
EXPORT_SYMBOL_GPL(arch_is_platform_page);

static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
{
	struct sgx_epc_section *section;

	section = xa_load(&sgx_epc_address_space, paddr);
	if (!section)
		return NULL;

	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
}

/*
 * Called in process context to handle a hardware reported
 * error in an SGX EPC page.
 * If the MF_ACTION_REQUIRED bit is set in flags, then the
 * context is the task that consumed the poison data. Otherwise
 * this is called from a kernel thread unrelated to the page.
 */
int arch_memory_failure(unsigned long pfn, int flags)
{
	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
	struct sgx_epc_section *section;
	struct sgx_numa_node *node;

	/*
	 * mm/memory-failure.c calls this routine for all errors
	 * where there isn't a "struct page" for the address. But that
	 * includes other address ranges besides SGX.
	 */
	if (!page)
		return -ENXIO;

	/*
	 * If poison was consumed synchronously. Send a SIGBUS to
	 * the task. Hardware has already exited the SGX enclave and
	 * will not allow re-entry to an enclave that has a memory
	 * error. The signal may help the task understand why the
	 * enclave is broken.
	 */
	if (flags & MF_ACTION_REQUIRED)
		force_sig(SIGBUS);

	section = &sgx_epc_sections[page->section];
	node = section->node;

	spin_lock(&node->lock);

	/* Already poisoned? Nothing more to do */
	if (page->poison)
		goto out;

	page->poison = 1;

	/*
	 * If the page is on a free list, move it to the per-node
	 * poison page list.
	 */
	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
		list_move(&page->list, &node->sgx_poison_page_list);
		goto out;
	}

	/*
	 * TBD: Add additional plumbing to enable pre-emptive
	 * action for asynchronous poison notification. Until
	 * then just hope that the poison:
	 * a) is not accessed - sgx_free_epc_page() will deal with it
	 *    when the user gives it back
	 * b) results in a recoverable machine check rather than
	 *    a fatal one
	 */
out:
	spin_unlock(&node->lock);
	return 0;
}

/**
 * A section metric is concatenated in a way that @low bits 12-31 define the
 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
 * metric.
 */
static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
{
	return (low & GENMASK_ULL(31, 12)) +
	       ((high & GENMASK_ULL(19, 0)) << 32);
}

#ifdef CONFIG_NUMA
static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
}
static DEVICE_ATTR_RO(sgx_total_bytes);

static umode_t arch_node_attr_is_visible(struct kobject *kobj,
		struct attribute *attr, int idx)
{
	/* Make all x86/ attributes invisible when SGX is not initialized: */
	if (nodes_empty(sgx_numa_mask))
		return 0;

	return attr->mode;
}

static struct attribute *arch_node_dev_attrs[] = {
	&dev_attr_sgx_total_bytes.attr,
	NULL,
};

const struct attribute_group arch_node_dev_group = {
	.name = "x86",
	.attrs = arch_node_dev_attrs,
	.is_visible = arch_node_attr_is_visible,
};

static void __init arch_update_sysfs_visibility(int nid)
{
	struct node *node = node_devices[nid];
	int ret;

	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);

	if (ret)
		pr_err("sysfs update failed (%d), files may be invisible", ret);
}
#else /* !CONFIG_NUMA */
static void __init arch_update_sysfs_visibility(int nid) {}
#endif

static bool __init sgx_page_cache_init(void)
{
	u32 eax, ebx, ecx, edx, type;
	u64 pa, size;
	int nid;
	int i;

	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
	if (!sgx_numa_nodes)
		return false;

	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);

		type = eax & SGX_CPUID_EPC_MASK;
		if (type == SGX_CPUID_EPC_INVALID)
			break;

		if (type != SGX_CPUID_EPC_SECTION) {
			pr_err_once("Unknown EPC section type: %u\n", type);
			break;
		}

		pa   = sgx_calc_section_metric(eax, ebx);
		size = sgx_calc_section_metric(ecx, edx);

		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);

		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
			pr_err("No free memory for an EPC section\n");
			break;
		}

		nid = numa_map_to_online_node(phys_to_target_node(pa));
		if (nid == NUMA_NO_NODE) {
			/* The physical address is already printed above. */
			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
			nid = 0;
		}

		if (!node_isset(nid, sgx_numa_mask)) {
			spin_lock_init(&sgx_numa_nodes[nid].lock);
			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
			node_set(nid, sgx_numa_mask);
			sgx_numa_nodes[nid].size = 0;

			/* Make SGX-specific node sysfs files visible: */
			arch_update_sysfs_visibility(nid);
		}

		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
		sgx_numa_nodes[nid].size += size;

		sgx_nr_epc_sections++;
	}

	if (!sgx_nr_epc_sections) {
		pr_err("There are zero EPC sections.\n");
		return false;
	}

	return true;
}

/*
 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
 * Bare-metal driver requires to update them to hash of enclave's signer
 * before EINIT. KVM needs to update them to guest's virtual MSR values
 * before doing EINIT from guest.
 */
void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
{
	int i;

	WARN_ON_ONCE(preemptible());

	for (i = 0; i < 4; i++)
		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
}

const struct file_operations sgx_provision_fops = {
	.owner			= THIS_MODULE,
};

static struct miscdevice sgx_dev_provision = {
	.minor = MISC_DYNAMIC_MINOR,
	.name = "sgx_provision",
	.nodename = "sgx_provision",
	.fops = &sgx_provision_fops,
};

/**
 * sgx_set_attribute() - Update allowed attributes given file descriptor
 * @allowed_attributes:		Pointer to allowed enclave attributes
 * @attribute_fd:		File descriptor for specific attribute
 *
 * Append enclave attribute indicated by file descriptor to allowed
 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
 * /dev/sgx_provision is supported.
 *
 * Return:
 * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
 * -EINVAL:	Invalid, or not supported file descriptor
 */
int sgx_set_attribute(unsigned long *allowed_attributes,
		      unsigned int attribute_fd)
{
	struct file *file;

	file = fget(attribute_fd);
	if (!file)
		return -EINVAL;

	if (file->f_op != &sgx_provision_fops) {
		fput(file);
		return -EINVAL;
	}

	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;

	fput(file);
	return 0;
}
EXPORT_SYMBOL_GPL(sgx_set_attribute);

static int __init sgx_init(void)
{
	int ret;
	int i;

	if (!cpu_feature_enabled(X86_FEATURE_SGX))
		return -ENODEV;

	if (!sgx_page_cache_init())
		return -ENOMEM;

	if (!sgx_page_reclaimer_init()) {
		ret = -ENOMEM;
		goto err_page_cache;
	}

	ret = misc_register(&sgx_dev_provision);
	if (ret)
		goto err_kthread;

	/*
	 * Always try to initialize the native *and* KVM drivers.
	 * The KVM driver is less picky than the native one and
	 * can function if the native one is not supported on the
	 * current system or fails to initialize.
	 *
	 * Error out only if both fail to initialize.
	 */
	ret = sgx_drv_init();

	if (sgx_vepc_init() && ret)
		goto err_provision;

	return 0;

err_provision:
	misc_deregister(&sgx_dev_provision);

err_kthread:
	kthread_stop(ksgxd_tsk);

err_page_cache:
	for (i = 0; i < sgx_nr_epc_sections; i++) {
		vfree(sgx_epc_sections[i].pages);
		memunmap(sgx_epc_sections[i].virt_addr);
	}

	return ret;
}

device_initcall(sgx_init);