summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/uv/uv_hub.h
blob: 21f7385badb8f9eb4249aef142487e27b264b32d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
 */

#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H

#ifdef CONFIG_X86_64
#include <linux/numa.h>
#include <linux/percpu.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <asm/types.h>
#include <asm/percpu.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>


/*
 * Addressing Terminology
 *
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
 *
 *	N	- Number of bits in the node portion of a socket physical
 *		  address.
 *
 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 *		  routers always have low bit of 1, C/MBricks have low bit
 *		  equal to 0. Most addressing macros that target UV hub chips
 *		  right shift the NASID by 1 to exclude the always-zero bit.
 *		  NASIDs contain up to 15 bits.
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 *		  of the nasid for socket usage.
 *
 *	GPA	- (global physical address) a socket physical address converted
 *		  so that it can be used by the GRU as a global address. Socket
 *		  physical addresses 1) need additional NASID (node) bits added
 *		  to the high end of the address, and 2) unaliased if the
 *		  partition does not have a physical address 0. In addition, on
 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
 *
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
 *
 * APICID format
 *	NOTE!!!!!! This is the current format of the APICID. However, code
 *	should assume that this will change in the future. Use functions
 *	in this file for all APICID bit manipulations and conversion.
 *
 *		1111110000000000
 *		5432109876543210
 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
 *		sssssssssss
 *
 *			p  = pnode bits
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
 *			s  = bits that are in the SOCKET_ID CSR
 *
 *	Note: Processor may support fewer bits in the APICID register. The ACPI
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
 *	      Unless otherwise specified, all references to APICID refer to
 *	      the FULL value contained in ACPI tables, not the subset in the
 *	      processor APICID register.
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)

struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
	unsigned long		global_mmr_base;
	unsigned long		gpa_mask;
	unsigned int		gnode_extra;
	unsigned char		hub_revision;
	unsigned char		apic_pnode_shift;
	unsigned char		m_shift;
	unsigned char		n_lshift;
	unsigned long		gnode_upper;
	unsigned long		lowmem_remap_top;
	unsigned long		lowmem_remap_base;
	unsigned short		pnode;
	unsigned short		pnode_mask;
	unsigned short		coherency_domain_number;
	unsigned short		numa_blade_id;
	unsigned char		blade_processor_id;
	unsigned char		m_val;
	unsigned char		n_val;
	struct uv_scir_s	scir;
};

DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

/*
 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
 * This is a software convention - NOT the hardware revision numbers in
 * the hub chip.
 */
#define UV1_HUB_REVISION_BASE		1
#define UV2_HUB_REVISION_BASE		3

static inline int is_uv1_hub(void)
{
	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}

static inline int is_uv2_hub(void)
{
	return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
}

static inline int is_uv2_1_hub(void)
{
	return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
}

static inline int is_uv2_2_hub(void)
{
	return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
}

union uvh_apicid {
    unsigned long       v;
    struct uvh_apicid_s {
        unsigned long   local_apic_mask  : 24;
        unsigned long   local_apic_shift :  5;
        unsigned long   unused1          :  3;
        unsigned long   pnode_mask       : 24;
        unsigned long   pnode_shift      :  5;
        unsigned long   unused2          :  3;
    } s;
};

/*
 * Local & Global MMR space macros.
 *	Note: macros are intended to be used ONLY by inline functions
 *	in this file - not by other kernel code.
 *		n -  NASID (full 15-bit global nasid)
 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
 *		p -  PNODE (local part of nsids, right shifted 1)
 */
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)

#define UV1_LOCAL_MMR_BASE		0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)

#define UV2_LOCAL_MMR_BASE		0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)

#define UV_LOCAL_MMR_BASE		(is_uv1_hub() ? UV1_LOCAL_MMR_BASE     \
						: UV2_LOCAL_MMR_BASE)
#define UV_GLOBAL_MMR32_BASE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE  \
						: UV2_GLOBAL_MMR32_BASE)
#define UV_LOCAL_MMR_SIZE		(is_uv1_hub() ? UV1_LOCAL_MMR_SIZE :   \
						UV2_LOCAL_MMR_SIZE)
#define UV_GLOBAL_MMR32_SIZE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
						UV2_GLOBAL_MMR32_SIZE)
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)

#define UV_GLOBAL_GRU_MMR_BASE		0x4000000

#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26

#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))

#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)

#define UVH_APICID		0x002D0E00L
#define UV_APIC_PNODE_SHIFT	6

#define UV_APICID_HIBIT_MASK	0xffff0000

/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

/* Loop through all installed blades */
#define for_each_possible_blade(bid)		\
	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)

/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
 *	Note: use the standard __pa() & __va() macros for converting
 *	      between socket virtual and socket physical addresses.
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
		paddr |= uv_hub_info->lowmem_remap_base;
	paddr |= uv_hub_info->gnode_upper;
	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
	return paddr;
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
	return uv_soc_phys_ram_to_gpa(__pa(v));
}

/* Top two bits indicate the requested address is in MMR space.  */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
	return (gpa >> 62) == 0x3UL;
}

/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
	unsigned long paddr;
	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;

	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
	paddr = gpa & uv_hub_info->gpa_mask;
	if (paddr >= remap_base && paddr < remap_base + remap_top)
		paddr -= remap_base;
	return paddr;
}


/* gpa -> pnode */
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
	return gpa >> uv_hub_info->n_lshift;
}

/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;

	return uv_gpa_to_gnode(gpa) & n_mask;
}

/* gpa -> node offset*/
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
}

/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}


/*
 * Extract a PNODE from an APICID (full apicid, not processor subset)
 */
static inline int uv_apicid_to_pnode(int apicid)
{
	return (apicid >> uv_hub_info->apic_pnode_shift);
}

/*
 * Convert an apicid to the socket number on the blade
 */
static inline int uv_apicid_to_socket(int apicid)
{
	if (is_uv1_hub())
		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
	else
		return 0;
}

/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
{
	return __va(UV_GLOBAL_MMR32_BASE |
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
}

static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
{
	writeq(val, uv_global_mmr32_address(pnode, offset));
}

static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
{
	return readq(uv_global_mmr32_address(pnode, offset));
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
{
	return __va(UV_GLOBAL_MMR64_BASE |
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
}

static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
{
	writeq(val, uv_global_mmr64_address(pnode, offset));
}

static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
{
	return readq(uv_global_mmr64_address(pnode, offset));
}

/*
 * Global MMR space addresses when referenced by the GRU. (GRU does
 * NOT use socket addressing).
 */
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
	return UV_GLOBAL_GRU_MMR_BASE | offset |
		((unsigned long)pnode << uv_hub_info->m_val);
}

static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
	writeb(val, uv_global_mmr64_address(pnode, offset));
}

static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
	return readb(uv_global_mmr64_address(pnode, offset));
}

/*
 * Access hub local MMRs. Faster than using global space but only local MMRs
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
	return readq(uv_local_mmr_address(offset));
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
	writeq(val, uv_local_mmr_address(offset));
}

static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
	return readb(uv_local_mmr_address(offset));
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
	writeb(val, uv_local_mmr_address(offset));
}

/*
 * Structures and definitions for converting between cpu, node, pnode, and blade
 * numbers.
 */
struct uv_blade_info {
	unsigned short	nr_possible_cpus;
	unsigned short	nr_online_cpus;
	unsigned short	pnode;
	short		memory_nid;
	spinlock_t	nmi_lock;
	unsigned long	nmi_count;
};
extern struct uv_blade_info *uv_blade_info;
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return uv_hub_info->blade_processor_id;
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return uv_cpu_to_blade[cpu];
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return uv_node_to_blade[nid];
}

/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
{
	return uv_blade_info[bid].pnode;
}

/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
	return uv_blade_info[bid].memory_nid;
}

/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
	return uv_blade_info[bid].nr_possible_cpus;
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return uv_blade_info[bid].nr_online_cpus;
}

/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
{
	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
}

/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
{
	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
	if (uv_hub_info->scir.state != value) {
		uv_hub_info->scir.state = value;
		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
	}
}

static inline unsigned long uv_scir_offset(int apicid)
{
	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}

static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
	if (uv_cpu_hub_info(cpu)->scir.state != value) {
		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
				uv_cpu_hub_info(cpu)->scir.offset, value);
		uv_cpu_hub_info(cpu)->scir.state = value;
	}
}

extern unsigned int uv_apicid_hibits;
static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
{
	apicid |= uv_apicid_hibits;
	return (1UL << UVH_IPI_INT_SEND_SHFT) |
			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
			(vector << UVH_IPI_INT_VECTOR_SHFT);
}

static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
{
	unsigned long val;
	unsigned long dmode = dest_Fixed;

	if (vector == NMI_VECTOR)
		dmode = dest_NMI;

	val = uv_hub_ipi_value(apicid, vector, dmode);
	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}

/*
 * Get the minimum revision number of the hub chips within the partition.
 *     1 - UV1 rev 1.0 initial silicon
 *     2 - UV1 rev 2.0 production silicon
 *     3 - UV2 rev 1.0 initial silicon
 */
static inline int uv_get_min_hub_revision_id(void)
{
	return uv_hub_info->hub_revision;
}

#endif /* CONFIG_X86_64 */
#endif /* _ASM_X86_UV_UV_HUB_H */