1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* thread_info.h: low-level thread information
*
* Copyright (C) 2002 David Howells (dhowells@redhat.com)
* - Incorporating suggestions made by Linus Torvalds and Dave Miller
*/
#ifndef _ASM_X86_THREAD_INFO_H
#define _ASM_X86_THREAD_INFO_H
#include <linux/compiler.h>
#include <asm/page.h>
#include <asm/percpu.h>
#include <asm/types.h>
/*
* TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we
* reserve at the top of the kernel stack. We do it because of a nasty
* 32-bit corner case. On x86_32, the hardware stack frame is
* variable-length. Except for vm86 mode, struct pt_regs assumes a
* maximum-length frame. If we enter from CPL 0, the top 8 bytes of
* pt_regs don't actually exist. Ordinarily this doesn't matter, but it
* does in at least one case:
*
* If we take an NMI early enough in SYSENTER, then we can end up with
* pt_regs that extends above sp0. On the way out, in the espfix code,
* we can read the saved SS value, but that value will be above sp0.
* Without this offset, that can result in a page fault. (We are
* careful that, in this case, the value we read doesn't matter.)
*
* In vm86 mode, the hardware frame is much longer still, so add 16
* bytes to make room for the real-mode segments.
*
* x86_64 has a fixed-length stack frame.
*/
#ifdef CONFIG_X86_32
# ifdef CONFIG_VM86
# define TOP_OF_KERNEL_STACK_PADDING 16
# else
# define TOP_OF_KERNEL_STACK_PADDING 8
# endif
#else
# define TOP_OF_KERNEL_STACK_PADDING 0
#endif
/*
* low level task data that entry.S needs immediate access to
* - this struct should fit entirely inside of one cache line
* - this struct shares the supervisor stack pages
*/
#ifndef __ASSEMBLY__
struct task_struct;
#include <asm/cpufeature.h>
#include <linux/atomic.h>
struct thread_info {
struct task_struct *task; /* main task structure */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
mm_segment_t addr_limit;
};
#define INIT_THREAD_INFO(tsk) \
{ \
.task = &tsk, \
.flags = 0, \
.cpu = 0, \
.addr_limit = KERNEL_DS, \
}
#define init_thread_info (init_thread_union.thread_info)
#define init_stack (init_thread_union.stack)
#else /* !__ASSEMBLY__ */
#include <asm/asm-offsets.h>
#endif
/*
* thread information flags
* - these are process state flags that various assembly files
* may need to access
* - pending work-to-be-done flags are in LSW
* - other flags in MSW
* Warning: layout of LSW is hardcoded in entry.S
*/
#define TIF_SYSCALL_TRACE 0 /* syscall trace active */
#define TIF_NOTIFY_RESUME 1 /* callback before returning to user */
#define TIF_SIGPENDING 2 /* signal pending */
#define TIF_NEED_RESCHED 3 /* rescheduling necessary */
#define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/
#define TIF_SYSCALL_EMU 6 /* syscall emulation active */
#define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */
#define TIF_SECCOMP 8 /* secure computing */
#define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */
#define TIF_UPROBE 12 /* breakpointed or singlestepping */
#define TIF_NOTSC 16 /* TSC is not accessible in userland */
#define TIF_IA32 17 /* IA32 compatibility process */
#define TIF_FORK 18 /* ret_from_fork */
#define TIF_NOHZ 19 /* in adaptive nohz mode */
#define TIF_MEMDIE 20 /* is terminating due to OOM killer */
#define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */
#define TIF_IO_BITMAP 22 /* uses I/O bitmap */
#define TIF_FORCED_TF 24 /* true if TF in eflags artificially */
#define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */
#define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */
#define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */
#define TIF_ADDR32 29 /* 32-bit address space on 64 bits */
#define TIF_X32 30 /* 32-bit native x86-64 binary */
#define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE)
#define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME)
#define _TIF_SIGPENDING (1 << TIF_SIGPENDING)
#define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP)
#define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED)
#define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU)
#define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT)
#define _TIF_SECCOMP (1 << TIF_SECCOMP)
#define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY)
#define _TIF_UPROBE (1 << TIF_UPROBE)
#define _TIF_NOTSC (1 << TIF_NOTSC)
#define _TIF_IA32 (1 << TIF_IA32)
#define _TIF_FORK (1 << TIF_FORK)
#define _TIF_NOHZ (1 << TIF_NOHZ)
#define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG)
#define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP)
#define _TIF_FORCED_TF (1 << TIF_FORCED_TF)
#define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP)
#define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES)
#define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT)
#define _TIF_ADDR32 (1 << TIF_ADDR32)
#define _TIF_X32 (1 << TIF_X32)
/*
* work to do in syscall_trace_enter(). Also includes TIF_NOHZ for
* enter_from_user_mode()
*/
#define _TIF_WORK_SYSCALL_ENTRY \
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU | _TIF_SYSCALL_AUDIT | \
_TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT | \
_TIF_NOHZ)
/* work to do on any return to user space */
#define _TIF_ALLWORK_MASK \
((0x0000FFFF & ~_TIF_SECCOMP) | _TIF_SYSCALL_TRACEPOINT | \
_TIF_NOHZ)
/* flags to check in __switch_to() */
#define _TIF_WORK_CTXSW \
(_TIF_IO_BITMAP|_TIF_NOTSC|_TIF_BLOCKSTEP)
#define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY)
#define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW)
#define STACK_WARN (THREAD_SIZE/8)
/*
* macros/functions for gaining access to the thread information structure
*
* preempt_count needs to be 1 initially, until the scheduler is functional.
*/
#ifndef __ASSEMBLY__
static inline struct thread_info *current_thread_info(void)
{
return (struct thread_info *)(current_top_of_stack() - THREAD_SIZE);
}
static inline unsigned long current_stack_pointer(void)
{
unsigned long sp;
#ifdef CONFIG_X86_64
asm("mov %%rsp,%0" : "=g" (sp));
#else
asm("mov %%esp,%0" : "=g" (sp));
#endif
return sp;
}
#else /* !__ASSEMBLY__ */
#ifdef CONFIG_X86_64
# define cpu_current_top_of_stack (cpu_tss + TSS_sp0)
#endif
/* Load thread_info address into "reg" */
#define GET_THREAD_INFO(reg) \
_ASM_MOV PER_CPU_VAR(cpu_current_top_of_stack),reg ; \
_ASM_SUB $(THREAD_SIZE),reg ;
/*
* ASM operand which evaluates to a 'thread_info' address of
* the current task, if it is known that "reg" is exactly "off"
* bytes below the top of the stack currently.
*
* ( The kernel stack's size is known at build time, it is usually
* 2 or 4 pages, and the bottom of the kernel stack contains
* the thread_info structure. So to access the thread_info very
* quickly from assembly code we can calculate down from the
* top of the kernel stack to the bottom, using constant,
* build-time calculations only. )
*
* For example, to fetch the current thread_info->flags value into %eax
* on x86-64 defconfig kernels, in syscall entry code where RSP is
* currently at exactly SIZEOF_PTREGS bytes away from the top of the
* stack:
*
* mov ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS), %eax
*
* will translate to:
*
* 8b 84 24 b8 c0 ff ff mov -0x3f48(%rsp), %eax
*
* which is below the current RSP by almost 16K.
*/
#define ASM_THREAD_INFO(field, reg, off) ((field)+(off)-THREAD_SIZE)(reg)
#endif
/*
* Thread-synchronous status.
*
* This is different from the flags in that nobody else
* ever touches our thread-synchronous status, so we don't
* have to worry about atomic accesses.
*/
#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
#define TS_RESTORE_SIGMASK 0x0008 /* restore signal mask in do_signal() */
#ifndef __ASSEMBLY__
#define HAVE_SET_RESTORE_SIGMASK 1
static inline void set_restore_sigmask(void)
{
struct thread_info *ti = current_thread_info();
ti->status |= TS_RESTORE_SIGMASK;
WARN_ON(!test_bit(TIF_SIGPENDING, (unsigned long *)&ti->flags));
}
static inline void clear_restore_sigmask(void)
{
current_thread_info()->status &= ~TS_RESTORE_SIGMASK;
}
static inline bool test_restore_sigmask(void)
{
return current_thread_info()->status & TS_RESTORE_SIGMASK;
}
static inline bool test_and_clear_restore_sigmask(void)
{
struct thread_info *ti = current_thread_info();
if (!(ti->status & TS_RESTORE_SIGMASK))
return false;
ti->status &= ~TS_RESTORE_SIGMASK;
return true;
}
static inline bool in_ia32_syscall(void)
{
#ifdef CONFIG_X86_32
return true;
#endif
#ifdef CONFIG_IA32_EMULATION
if (current_thread_info()->status & TS_COMPAT)
return true;
#endif
return false;
}
/*
* Force syscall return via IRET by making it look as if there was
* some work pending. IRET is our most capable (but slowest) syscall
* return path, which is able to restore modified SS, CS and certain
* EFLAGS values that other (fast) syscall return instructions
* are not able to restore properly.
*/
#define force_iret() set_thread_flag(TIF_NOTIFY_RESUME)
extern void arch_task_cache_init(void);
extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
extern void arch_release_task_struct(struct task_struct *tsk);
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_X86_THREAD_INFO_H */
|