summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/spinlock.h
blob: 64b611782ef0856f1744611936f76d6e8de1bb57 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#ifndef _ASM_X86_SPINLOCK_H
#define _ASM_X86_SPINLOCK_H

#include <linux/jump_label.h>
#include <linux/atomic.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <linux/compiler.h>
#include <asm/paravirt.h>
#include <asm/bitops.h>

/*
 * Your basic SMP spinlocks, allowing only a single CPU anywhere
 *
 * Simple spin lock operations.  There are two variants, one clears IRQ's
 * on the local processor, one does not.
 *
 * These are fair FIFO ticket locks, which support up to 2^16 CPUs.
 *
 * (the type definitions are in asm/spinlock_types.h)
 */

#ifdef CONFIG_X86_32
# define LOCK_PTR_REG "a"
#else
# define LOCK_PTR_REG "D"
#endif

#if defined(CONFIG_X86_32) && (defined(CONFIG_X86_PPRO_FENCE))
/*
 * On PPro SMP, we use a locked operation to unlock
 * (PPro errata 66, 92)
 */
# define UNLOCK_LOCK_PREFIX LOCK_PREFIX
#else
# define UNLOCK_LOCK_PREFIX
#endif

/* How long a lock should spin before we consider blocking */
#define SPIN_THRESHOLD	(1 << 15)

extern struct static_key paravirt_ticketlocks_enabled;
static __always_inline bool static_key_false(struct static_key *key);

#ifdef CONFIG_PARAVIRT_SPINLOCKS

static inline void __ticket_enter_slowpath(arch_spinlock_t *lock)
{
	set_bit(0, (volatile unsigned long *)&lock->tickets.head);
}

#else  /* !CONFIG_PARAVIRT_SPINLOCKS */
static __always_inline void __ticket_lock_spinning(arch_spinlock_t *lock,
							__ticket_t ticket)
{
}
static inline void __ticket_unlock_kick(arch_spinlock_t *lock,
							__ticket_t ticket)
{
}

#endif /* CONFIG_PARAVIRT_SPINLOCKS */
static inline int  __tickets_equal(__ticket_t one, __ticket_t two)
{
	return !((one ^ two) & ~TICKET_SLOWPATH_FLAG);
}

static inline void __ticket_check_and_clear_slowpath(arch_spinlock_t *lock,
							__ticket_t head)
{
	if (head & TICKET_SLOWPATH_FLAG) {
		arch_spinlock_t old, new;

		old.tickets.head = head;
		new.tickets.head = head & ~TICKET_SLOWPATH_FLAG;
		old.tickets.tail = new.tickets.head + TICKET_LOCK_INC;
		new.tickets.tail = old.tickets.tail;

		/* try to clear slowpath flag when there are no contenders */
		cmpxchg(&lock->head_tail, old.head_tail, new.head_tail);
	}
}

static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock)
{
	return __tickets_equal(lock.tickets.head, lock.tickets.tail);
}

/*
 * Ticket locks are conceptually two parts, one indicating the current head of
 * the queue, and the other indicating the current tail. The lock is acquired
 * by atomically noting the tail and incrementing it by one (thus adding
 * ourself to the queue and noting our position), then waiting until the head
 * becomes equal to the the initial value of the tail.
 *
 * We use an xadd covering *both* parts of the lock, to increment the tail and
 * also load the position of the head, which takes care of memory ordering
 * issues and should be optimal for the uncontended case. Note the tail must be
 * in the high part, because a wide xadd increment of the low part would carry
 * up and contaminate the high part.
 */
static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
{
	register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC };

	inc = xadd(&lock->tickets, inc);
	if (likely(inc.head == inc.tail))
		goto out;

	for (;;) {
		unsigned count = SPIN_THRESHOLD;

		do {
			inc.head = READ_ONCE(lock->tickets.head);
			if (__tickets_equal(inc.head, inc.tail))
				goto clear_slowpath;
			cpu_relax();
		} while (--count);
		__ticket_lock_spinning(lock, inc.tail);
	}
clear_slowpath:
	__ticket_check_and_clear_slowpath(lock, inc.head);
out:
	barrier();	/* make sure nothing creeps before the lock is taken */
}

static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
{
	arch_spinlock_t old, new;

	old.tickets = READ_ONCE(lock->tickets);
	if (!__tickets_equal(old.tickets.head, old.tickets.tail))
		return 0;

	new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT);
	new.head_tail &= ~TICKET_SLOWPATH_FLAG;

	/* cmpxchg is a full barrier, so nothing can move before it */
	return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
}

static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
{
	if (TICKET_SLOWPATH_FLAG &&
		static_key_false(&paravirt_ticketlocks_enabled)) {
		__ticket_t head;

		BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS);

		head = xadd(&lock->tickets.head, TICKET_LOCK_INC);

		if (unlikely(head & TICKET_SLOWPATH_FLAG)) {
			head &= ~TICKET_SLOWPATH_FLAG;
			__ticket_unlock_kick(lock, (head + TICKET_LOCK_INC));
		}
	} else
		__add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
}

static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
	struct __raw_tickets tmp = READ_ONCE(lock->tickets);

	return !__tickets_equal(tmp.tail, tmp.head);
}

static inline int arch_spin_is_contended(arch_spinlock_t *lock)
{
	struct __raw_tickets tmp = READ_ONCE(lock->tickets);

	tmp.head &= ~TICKET_SLOWPATH_FLAG;
	return (__ticket_t)(tmp.tail - tmp.head) > TICKET_LOCK_INC;
}
#define arch_spin_is_contended	arch_spin_is_contended

static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
						  unsigned long flags)
{
	arch_spin_lock(lock);
}

static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
	__ticket_t head = READ_ONCE(lock->tickets.head);

	for (;;) {
		struct __raw_tickets tmp = READ_ONCE(lock->tickets);
		/*
		 * We need to check "unlocked" in a loop, tmp.head == head
		 * can be false positive because of overflow.
		 */
		if (__tickets_equal(tmp.head, tmp.tail) ||
				!__tickets_equal(tmp.head, head))
			break;

		cpu_relax();
	}
}

/*
 * Read-write spinlocks, allowing multiple readers
 * but only one writer.
 *
 * NOTE! it is quite common to have readers in interrupts
 * but no interrupt writers. For those circumstances we
 * can "mix" irq-safe locks - any writer needs to get a
 * irq-safe write-lock, but readers can get non-irqsafe
 * read-locks.
 *
 * On x86, we implement read-write locks using the generic qrwlock with
 * x86 specific optimization.
 */

#include <asm/qrwlock.h>

#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)

#define arch_spin_relax(lock)	cpu_relax()
#define arch_read_relax(lock)	cpu_relax()
#define arch_write_relax(lock)	cpu_relax()

#endif /* _ASM_X86_SPINLOCK_H */