summaryrefslogtreecommitdiff
path: root/arch/ppc/syslib/m8260_pci_erratum9.c
blob: 99e4bc0e42af00b0c7b99b440ccb9f44ac425766 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*
 * Workaround for device erratum PCI 9.
 * See Motorola's "XPC826xA Family Device Errata Reference."
 * The erratum applies to all 8260 family Hip4 processors.  It is scheduled 
 * to be fixed in HiP4 Rev C.  Erratum PCI 9 states that a simultaneous PCI 
 * inbound write transaction and PCI outbound read transaction can result in a 
 * bus deadlock.  The suggested workaround is to use the IDMA controller to 
 * perform all reads from PCI configuration, memory, and I/O space.
 *
 * Author:  andy_lowe@mvista.com
 *
 * 2003 (c) MontaVista Software, Inc. This file is licensed under
 * the terms of the GNU General Public License version 2. This program
 * is licensed "as is" without any warranty of any kind, whether express
 * or implied.
 */
#include <linux/kernel.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/string.h>

#include <asm/io.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/byteorder.h>
#include <asm/mpc8260.h>
#include <asm/immap_cpm2.h>
#include <asm/cpm2.h>

#include "m82xx_pci.h"

#ifdef CONFIG_8260_PCI9
/*#include <asm/mpc8260_pci9.h>*/ /* included in asm/io.h */

#define IDMA_XFER_BUF_SIZE 64	/* size of the IDMA transfer buffer */

/* define a structure for the IDMA dpram usage */
typedef struct idma_dpram_s {
	idma_t pram;				/* IDMA parameter RAM */
	u_char xfer_buf[IDMA_XFER_BUF_SIZE];	/* IDMA transfer buffer */
	idma_bd_t bd;				/* buffer descriptor */
} idma_dpram_t;

/* define offsets relative to start of IDMA dpram */
#define IDMA_XFER_BUF_OFFSET (sizeof(idma_t))
#define IDMA_BD_OFFSET (sizeof(idma_t) + IDMA_XFER_BUF_SIZE)

/* define globals */
static volatile idma_dpram_t *idma_dpram;

/* Exactly one of CONFIG_8260_PCI9_IDMAn must be defined, 
 * where n is 1, 2, 3, or 4.  This selects the IDMA channel used for 
 * the PCI9 workaround.
 */
#ifdef CONFIG_8260_PCI9_IDMA1
#define IDMA_CHAN 0
#define PROFF_IDMA PROFF_IDMA1_BASE
#define IDMA_PAGE CPM_CR_IDMA1_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA1_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA2
#define IDMA_CHAN 1
#define PROFF_IDMA PROFF_IDMA2_BASE
#define IDMA_PAGE CPM_CR_IDMA2_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA2_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA3
#define IDMA_CHAN 2
#define PROFF_IDMA PROFF_IDMA3_BASE
#define IDMA_PAGE CPM_CR_IDMA3_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA3_SBLOCK
#endif
#ifdef CONFIG_8260_PCI9_IDMA4
#define IDMA_CHAN 3
#define PROFF_IDMA PROFF_IDMA4_BASE
#define IDMA_PAGE CPM_CR_IDMA4_PAGE
#define IDMA_SBLOCK CPM_CR_IDMA4_SBLOCK
#endif

void idma_pci9_init(void)
{
	uint dpram_offset;
	volatile idma_t *pram;
	volatile im_idma_t *idma_reg;
	volatile cpm2_map_t *immap = cpm2_immr;

	/* allocate IDMA dpram */
	dpram_offset = cpm_dpalloc(sizeof(idma_dpram_t), 64);
	idma_dpram = cpm_dpram_addr(dpram_offset); 

	/* initialize the IDMA parameter RAM */
	memset((void *)idma_dpram, 0, sizeof(idma_dpram_t));
	pram = &idma_dpram->pram;
	pram->ibase = dpram_offset + IDMA_BD_OFFSET;
	pram->dpr_buf = dpram_offset + IDMA_XFER_BUF_OFFSET;
	pram->ss_max = 32;
	pram->dts = 32;

	/* initialize the IDMA_BASE pointer to the IDMA parameter RAM */
	*((ushort *) &immap->im_dprambase[PROFF_IDMA]) = dpram_offset;

	/* initialize the IDMA registers */
	idma_reg = (volatile im_idma_t *) &immap->im_sdma.sdma_idsr1;
	idma_reg[IDMA_CHAN].idmr = 0;		/* mask all IDMA interrupts */
	idma_reg[IDMA_CHAN].idsr = 0xff;	/* clear all event flags */

	printk("<4>Using IDMA%d for MPC8260 device erratum PCI 9 workaround\n",
		IDMA_CHAN + 1);

	return;
}

/* Use the IDMA controller to transfer data from I/O memory to local RAM.
 * The src address must be a physical address suitable for use by the DMA 
 * controller with no translation.  The dst address must be a kernel virtual 
 * address.  The dst address is translated to a physical address via 
 * virt_to_phys().
 * The sinc argument specifies whether or not the source address is incremented
 * by the DMA controller.  The source address is incremented if and only if sinc
 * is non-zero.  The destination address is always incremented since the 
 * destination is always host RAM.
 */
static void 
idma_pci9_read(u8 *dst, u8 *src, int bytes, int unit_size, int sinc)
{
	unsigned long flags;
	volatile idma_t *pram = &idma_dpram->pram;
	volatile idma_bd_t *bd = &idma_dpram->bd;
	volatile cpm2_map_t *immap = cpm2_immr;

	local_irq_save(flags);

	/* initialize IDMA parameter RAM for this transfer */
	if (sinc)
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
			  | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM;
	else
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_DINC 
			  | IDMA_DCM_SD_MEM2MEM;
	pram->ibdptr = pram->ibase;
	pram->sts = unit_size;
	pram->istate = 0;

	/* initialize the buffer descriptor */
	bd->dst = virt_to_phys(dst);
	bd->src = (uint) src;
	bd->len = bytes;
	bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL
		  | IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB;

	/* issue the START_IDMA command to the CP */
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
	immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0,
					 CPM_CR_START_IDMA) | CPM_CR_FLG;
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);

	/* wait for transfer to complete */
	while(bd->flags & IDMA_BD_V);

	local_irq_restore(flags);

	return;
}

/* Use the IDMA controller to transfer data from I/O memory to local RAM.
 * The dst address must be a physical address suitable for use by the DMA 
 * controller with no translation.  The src address must be a kernel virtual 
 * address.  The src address is translated to a physical address via 
 * virt_to_phys().
 * The dinc argument specifies whether or not the dest address is incremented
 * by the DMA controller.  The source address is incremented if and only if sinc
 * is non-zero.  The source address is always incremented since the 
 * source is always host RAM.
 */
static void 
idma_pci9_write(u8 *dst, u8 *src, int bytes, int unit_size, int dinc)
{
	unsigned long flags;
	volatile idma_t *pram = &idma_dpram->pram;
	volatile idma_bd_t *bd = &idma_dpram->bd;
	volatile cpm2_map_t *immap = cpm2_immr;

	local_irq_save(flags);

	/* initialize IDMA parameter RAM for this transfer */
	if (dinc)
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC
			  | IDMA_DCM_DINC | IDMA_DCM_SD_MEM2MEM;
	else
		pram->dcm = IDMA_DCM_DMA_WRAP_64 | IDMA_DCM_SINC 
			  | IDMA_DCM_SD_MEM2MEM;
	pram->ibdptr = pram->ibase;
	pram->sts = unit_size;
	pram->istate = 0;

	/* initialize the buffer descriptor */
	bd->dst = (uint) dst;
	bd->src = virt_to_phys(src);
	bd->len = bytes;
	bd->flags = IDMA_BD_V | IDMA_BD_W | IDMA_BD_I | IDMA_BD_L | IDMA_BD_DGBL
		  | IDMA_BD_DBO_BE | IDMA_BD_SBO_BE | IDMA_BD_SDTB;

	/* issue the START_IDMA command to the CP */
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);
	immap->im_cpm.cp_cpcr = mk_cr_cmd(IDMA_PAGE, IDMA_SBLOCK, 0,
					 CPM_CR_START_IDMA) | CPM_CR_FLG;
	while (immap->im_cpm.cp_cpcr & CPM_CR_FLG);

	/* wait for transfer to complete */
	while(bd->flags & IDMA_BD_V);

	local_irq_restore(flags);

	return;
}

/* Same as idma_pci9_read, but 16-bit little-endian byte swapping is performed
 * if the unit_size is 2, and 32-bit little-endian byte swapping is performed if
 * the unit_size is 4.
 */
static void 
idma_pci9_read_le(u8 *dst, u8 *src, int bytes, int unit_size, int sinc)
{
	int i;
	u8 *p;

	idma_pci9_read(dst, src, bytes, unit_size, sinc);
	switch(unit_size) {
		case 2:
			for (i = 0, p = dst; i < bytes; i += 2, p += 2)
				swab16s((u16 *) p);
			break;
		case 4:
			for (i = 0, p = dst; i < bytes; i += 4, p += 4)
				swab32s((u32 *) p);
			break;
		default:
			break;
	}
}
EXPORT_SYMBOL(idma_pci9_init);
EXPORT_SYMBOL(idma_pci9_read);
EXPORT_SYMBOL(idma_pci9_read_le);

static inline int is_pci_mem(unsigned long addr)
{
	if (addr >= M82xx_PCI_LOWER_MMIO &&
		addr <= M82xx_PCI_UPPER_MMIO)
		return 1;
	if (addr >= M82xx_PCI_LOWER_MEM &&
		addr <= M82xx_PCI_UPPER_MEM)
		return 1;
	return 0;
}

#define is_pci_mem(pa) ( (pa > 0x80000000) && (pa < 0xc0000000))
int readb(volatile unsigned char *addr)
{
	u8 val;
	unsigned long pa = iopa((unsigned long) addr);

	if (!is_pci_mem(pa))
		return in_8(addr);

	idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
	return val;
}

int readw(volatile unsigned short *addr)
{
	u16 val;
	unsigned long pa = iopa((unsigned long) addr);

	if (!is_pci_mem(pa))
		return in_le16(addr);

	idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
	return swab16(val);
}

unsigned readl(volatile unsigned *addr)
{
	u32 val;
	unsigned long pa = iopa((unsigned long) addr);

	if (!is_pci_mem(pa))
		return in_le32(addr);

	idma_pci9_read((u8 *)&val, (u8 *)pa, sizeof(val), sizeof(val), 0);
	return swab32(val);
}

int inb(unsigned port)
{
	u8 val;
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
	return val;
}

int inw(unsigned port)
{
	u16 val;
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
	return swab16(val);
}

unsigned inl(unsigned port)
{
	u32 val;
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)&val, (u8 *)addr, sizeof(val), sizeof(val), 0);
	return swab32(val);
}

void insb(unsigned port, void *buf, int ns)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u8), sizeof(u8), 0);
}

void insw(unsigned port, void *buf, int ns)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u16), sizeof(u16), 0);
}

void insl(unsigned port, void *buf, int nl)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, nl*sizeof(u32), sizeof(u32), 0);
}

void insw_ns(unsigned port, void *buf, int ns)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, ns*sizeof(u16), sizeof(u16), 0);
}

void insl_ns(unsigned port, void *buf, int nl)
{
	u8 *addr = (u8 *)(port + _IO_BASE);

	idma_pci9_read((u8 *)buf, (u8 *)addr, nl*sizeof(u32), sizeof(u32), 0);
}

void *memcpy_fromio(void *dest, unsigned long src, size_t count)
{
	unsigned long pa = iopa((unsigned long) src);

	if (is_pci_mem(pa))
		idma_pci9_read((u8 *)dest, (u8 *)pa, count, 32, 1);
	else
		memcpy(dest, (void *)src, count);
	return dest;
}

EXPORT_SYMBOL(readb);
EXPORT_SYMBOL(readw);
EXPORT_SYMBOL(readl);
EXPORT_SYMBOL(inb);
EXPORT_SYMBOL(inw);
EXPORT_SYMBOL(inl);
EXPORT_SYMBOL(insb);
EXPORT_SYMBOL(insw);
EXPORT_SYMBOL(insl);
EXPORT_SYMBOL(insw_ns);
EXPORT_SYMBOL(insl_ns);
EXPORT_SYMBOL(memcpy_fromio);

#endif	/* ifdef CONFIG_8260_PCI9 */

/* Indirect PCI routines adapted from arch/ppc/kernel/indirect_pci.c.
 * Copyright (C) 1998 Gabriel Paubert.
 */
#ifndef CONFIG_8260_PCI9
#define cfg_read(val, addr, type, op)	*val = op((type)(addr))
#else
#define cfg_read(val, addr, type, op) \
	idma_pci9_read_le((u8*)(val),(u8*)(addr),sizeof(*(val)),sizeof(*(val)),0)
#endif

#define cfg_write(val, addr, type, op)	op((type *)(addr), (val))

static int indirect_write_config(struct pci_bus *pbus, unsigned int devfn, int where,
			 int size, u32 value)
{
	struct pci_controller *hose = pbus->sysdata;
	u8 cfg_type = 0;
	if (ppc_md.pci_exclude_device)
		if (ppc_md.pci_exclude_device(pbus->number, devfn))
			return PCIBIOS_DEVICE_NOT_FOUND;

	if (hose->set_cfg_type)
		if (pbus->number != hose->first_busno)
			cfg_type = 1;

	out_be32(hose->cfg_addr,
		 (((where & 0xfc) | cfg_type) << 24) | (devfn << 16)
		 | ((pbus->number - hose->bus_offset) << 8) | 0x80);

	switch (size)
	{
		case 1:
			cfg_write(value, hose->cfg_data + (where & 3), u8, out_8);
			break;
		case 2:
			cfg_write(value, hose->cfg_data + (where & 2), u16, out_le16);
			break;
		case 4:
			cfg_write(value, hose->cfg_data + (where & 0), u32, out_le32);
			break;
	}		
	return PCIBIOS_SUCCESSFUL;
}

static int indirect_read_config(struct pci_bus *pbus, unsigned int devfn, int where,
			 int size, u32 *value)
{
	struct pci_controller *hose = pbus->sysdata;
	u8 cfg_type = 0;
	if (ppc_md.pci_exclude_device)
		if (ppc_md.pci_exclude_device(pbus->number, devfn))
			return PCIBIOS_DEVICE_NOT_FOUND;

	if (hose->set_cfg_type)
		if (pbus->number != hose->first_busno)
			cfg_type = 1;

	out_be32(hose->cfg_addr,
		 (((where & 0xfc) | cfg_type) << 24) | (devfn << 16)
		 | ((pbus->number - hose->bus_offset) << 8) | 0x80);

	switch (size)
	{
		case 1:
			cfg_read(value, hose->cfg_data + (where & 3), u8 *, in_8);
			break;
		case 2:
			cfg_read(value, hose->cfg_data + (where & 2), u16 *, in_le16);
			break;
		case 4:
			cfg_read(value, hose->cfg_data + (where & 0), u32 *, in_le32);
			break;
	}		
	return PCIBIOS_SUCCESSFUL;
}

static struct pci_ops indirect_pci_ops =
{
	.read = indirect_read_config,
	.write = indirect_write_config,
};

void
setup_m8260_indirect_pci(struct pci_controller* hose, u32 cfg_addr, u32 cfg_data)
{
	hose->ops = &indirect_pci_ops;
	hose->cfg_addr = (unsigned int *) ioremap(cfg_addr, 4);
	hose->cfg_data = (unsigned char *) ioremap(cfg_data, 4);
}