summaryrefslogtreecommitdiff
path: root/arch/powerpc/sysdev/qe_lib/qe.c
blob: 7f4c0754396197bdc5bf571c698b7813ffd3b979 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
 *
 * Authors: 	Shlomi Gridish <gridish@freescale.com>
 * 		Li Yang <leoli@freescale.com>
 * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
 *
 * Description:
 * General Purpose functions for the global management of the
 * QUICC Engine (QE).
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/immap_qe.h>
#include <asm/qe.h>
#include <asm/prom.h>
#include <asm/rheap.h>

static void qe_snums_init(void);
static void qe_muram_init(void);
static int qe_sdma_init(void);

static DEFINE_SPINLOCK(qe_lock);

/* QE snum state */
enum qe_snum_state {
	QE_SNUM_STATE_USED,
	QE_SNUM_STATE_FREE
};

/* QE snum */
struct qe_snum {
	u8 num;
	enum qe_snum_state state;
};

/* We allocate this here because it is used almost exclusively for
 * the communication processor devices.
 */
struct qe_immap *qe_immr = NULL;
EXPORT_SYMBOL(qe_immr);

static struct qe_snum snums[QE_NUM_OF_SNUM];	/* Dynamically allocated SNUMs */

static phys_addr_t qebase = -1;

phys_addr_t get_qe_base(void)
{
	struct device_node *qe;

	if (qebase != -1)
		return qebase;

	qe = of_find_node_by_type(NULL, "qe");
	if (qe) {
		unsigned int size;
		const void *prop = of_get_property(qe, "reg", &size);
		qebase = of_translate_address(qe, prop);
		of_node_put(qe);
	};

	return qebase;
}

EXPORT_SYMBOL(get_qe_base);

void qe_reset(void)
{
	if (qe_immr == NULL)
		qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);

	qe_snums_init();

	qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
		     QE_CR_PROTOCOL_UNSPECIFIED, 0);

	/* Reclaim the MURAM memory for our use. */
	qe_muram_init();

	if (qe_sdma_init())
		panic("sdma init failed!");
}

int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
{
	unsigned long flags;
	u8 mcn_shift = 0, dev_shift = 0;

	spin_lock_irqsave(&qe_lock, flags);
	if (cmd == QE_RESET) {
		out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
	} else {
		if (cmd == QE_ASSIGN_PAGE) {
			/* Here device is the SNUM, not sub-block */
			dev_shift = QE_CR_SNUM_SHIFT;
		} else if (cmd == QE_ASSIGN_RISC) {
			/* Here device is the SNUM, and mcnProtocol is
			 * e_QeCmdRiscAssignment value */
			dev_shift = QE_CR_SNUM_SHIFT;
			mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
		} else {
			if (device == QE_CR_SUBBLOCK_USB)
				mcn_shift = QE_CR_MCN_USB_SHIFT;
			else
				mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
		}

		out_be32(&qe_immr->cp.cecdr, cmd_input);
		out_be32(&qe_immr->cp.cecr,
			 (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
			  mcn_protocol << mcn_shift));
	}

	/* wait for the QE_CR_FLG to clear */
	while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG)
		cpu_relax();
	spin_unlock_irqrestore(&qe_lock, flags);

	return 0;
}
EXPORT_SYMBOL(qe_issue_cmd);

/* Set a baud rate generator. This needs lots of work. There are
 * 16 BRGs, which can be connected to the QE channels or output
 * as clocks. The BRGs are in two different block of internal
 * memory mapped space.
 * The baud rate clock is the system clock divided by something.
 * It was set up long ago during the initial boot phase and is
 * is given to us.
 * Baud rate clocks are zero-based in the driver code (as that maps
 * to port numbers). Documentation uses 1-based numbering.
 */
static unsigned int brg_clk = 0;

unsigned int get_brg_clk(void)
{
	struct device_node *qe;
	if (brg_clk)
		return brg_clk;

	qe = of_find_node_by_type(NULL, "qe");
	if (qe) {
		unsigned int size;
		const u32 *prop = of_get_property(qe, "brg-frequency", &size);
		brg_clk = *prop;
		of_node_put(qe);
	};
	return brg_clk;
}

/* This function is used by UARTS, or anything else that uses a 16x
 * oversampled clock.
 */
void qe_setbrg(u32 brg, u32 rate)
{
	volatile u32 *bp;
	u32 divisor, tempval;
	int div16 = 0;

	bp = &qe_immr->brg.brgc[brg];

	divisor = (get_brg_clk() / rate);
	if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
		div16 = 1;
		divisor /= 16;
	}

	tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE;
	if (div16)
		tempval |= QE_BRGC_DIV16;

	out_be32(bp, tempval);
}

/* Initialize SNUMs (thread serial numbers) according to
 * QE Module Control chapter, SNUM table
 */
static void qe_snums_init(void)
{
	int i;
	static const u8 snum_init[] = {
		0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
		0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
		0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
		0xD8, 0xD9, 0xE8, 0xE9,
	};

	for (i = 0; i < QE_NUM_OF_SNUM; i++) {
		snums[i].num = snum_init[i];
		snums[i].state = QE_SNUM_STATE_FREE;
	}
}

int qe_get_snum(void)
{
	unsigned long flags;
	int snum = -EBUSY;
	int i;

	spin_lock_irqsave(&qe_lock, flags);
	for (i = 0; i < QE_NUM_OF_SNUM; i++) {
		if (snums[i].state == QE_SNUM_STATE_FREE) {
			snums[i].state = QE_SNUM_STATE_USED;
			snum = snums[i].num;
			break;
		}
	}
	spin_unlock_irqrestore(&qe_lock, flags);

	return snum;
}
EXPORT_SYMBOL(qe_get_snum);

void qe_put_snum(u8 snum)
{
	int i;

	for (i = 0; i < QE_NUM_OF_SNUM; i++) {
		if (snums[i].num == snum) {
			snums[i].state = QE_SNUM_STATE_FREE;
			break;
		}
	}
}
EXPORT_SYMBOL(qe_put_snum);

static int qe_sdma_init(void)
{
	struct sdma *sdma = &qe_immr->sdma;
	u32 sdma_buf_offset;

	if (!sdma)
		return -ENODEV;

	/* allocate 2 internal temporary buffers (512 bytes size each) for
	 * the SDMA */
 	sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
	if (IS_MURAM_ERR(sdma_buf_offset))
		return -ENOMEM;

	out_be32(&sdma->sdebcr, sdma_buf_offset & QE_SDEBCR_BA_MASK);
 	out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
 					(0x1 << QE_SDMR_CEN_SHIFT)));

	return 0;
}

/*
 * muram_alloc / muram_free bits.
 */
static DEFINE_SPINLOCK(qe_muram_lock);

/* 16 blocks should be enough to satisfy all requests
 * until the memory subsystem goes up... */
static rh_block_t qe_boot_muram_rh_block[16];
static rh_info_t qe_muram_info;

static void qe_muram_init(void)
{
	struct device_node *np;
	u32 address;
	u64 size;
	unsigned int flags;

	/* initialize the info header */
	rh_init(&qe_muram_info, 1,
		sizeof(qe_boot_muram_rh_block) /
		sizeof(qe_boot_muram_rh_block[0]), qe_boot_muram_rh_block);

	/* Attach the usable muram area */
	/* XXX: This is a subset of the available muram. It
	 * varies with the processor and the microcode patches activated.
	 */
	if ((np = of_find_node_by_name(NULL, "data-only")) != NULL) {
		address = *of_get_address(np, 0, &size, &flags);
		of_node_put(np);
		rh_attach_region(&qe_muram_info,
			(void *)address, (int)size);
	}
}

/* This function returns an index into the MURAM area.
 */
u32 qe_muram_alloc(u32 size, u32 align)
{
	void *start;
	unsigned long flags;

	spin_lock_irqsave(&qe_muram_lock, flags);
	start = rh_alloc_align(&qe_muram_info, size, align, "QE");
	spin_unlock_irqrestore(&qe_muram_lock, flags);

	return (u32) start;
}
EXPORT_SYMBOL(qe_muram_alloc);

int qe_muram_free(u32 offset)
{
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&qe_muram_lock, flags);
	ret = rh_free(&qe_muram_info, (void *)offset);
	spin_unlock_irqrestore(&qe_muram_lock, flags);

	return ret;
}
EXPORT_SYMBOL(qe_muram_free);

/* not sure if this is ever needed */
u32 qe_muram_alloc_fixed(u32 offset, u32 size)
{
	void *start;
	unsigned long flags;

	spin_lock_irqsave(&qe_muram_lock, flags);
	start = rh_alloc_fixed(&qe_muram_info, (void *)offset, size, "commproc");
	spin_unlock_irqrestore(&qe_muram_lock, flags);

	return (u32) start;
}
EXPORT_SYMBOL(qe_muram_alloc_fixed);

void qe_muram_dump(void)
{
	rh_dump(&qe_muram_info);
}
EXPORT_SYMBOL(qe_muram_dump);

void *qe_muram_addr(u32 offset)
{
	return (void *)&qe_immr->muram[offset];
}
EXPORT_SYMBOL(qe_muram_addr);