summaryrefslogtreecommitdiff
path: root/arch/powerpc/kvm/e500.c
blob: afd3c255a42770749e3d80bc2b6f0a5d378eb15e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
 *
 * Author: Yu Liu, <yu.liu@freescale.com>
 *
 * Description:
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/miscdevice.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/kvm_ppc.h>

#include "../mm/mmu_decl.h"
#include "booke.h"
#include "e500.h"

struct id {
	unsigned long val;
	struct id **pentry;
};

#define NUM_TIDS 256

/*
 * This table provide mappings from:
 * (guestAS,guestTID,guestPR) --> ID of physical cpu
 * guestAS	[0..1]
 * guestTID	[0..255]
 * guestPR	[0..1]
 * ID		[1..255]
 * Each vcpu keeps one vcpu_id_table.
 */
struct vcpu_id_table {
	struct id id[2][NUM_TIDS][2];
};

/*
 * This table provide reversed mappings of vcpu_id_table:
 * ID --> address of vcpu_id_table item.
 * Each physical core has one pcpu_id_table.
 */
struct pcpu_id_table {
	struct id *entry[NUM_TIDS];
};

static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);

/* This variable keeps last used shadow ID on local core.
 * The valid range of shadow ID is [1..255] */
static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);

/*
 * Allocate a free shadow id and setup a valid sid mapping in given entry.
 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
 *
 * The caller must have preemption disabled, and keep it that way until
 * it has finished with the returned shadow id (either written into the
 * TLB or arch.shadow_pid, or discarded).
 */
static inline int local_sid_setup_one(struct id *entry)
{
	unsigned long sid;
	int ret = -1;

	sid = __this_cpu_inc_return(pcpu_last_used_sid);
	if (sid < NUM_TIDS) {
		__this_cpu_write(pcpu_sids.entry[sid], entry);
		entry->val = sid;
		entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
		ret = sid;
	}

	/*
	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
	 * the caller will invalidate everything and start over.
	 *
	 * sid > NUM_TIDS indicates a race, which we disable preemption to
	 * avoid.
	 */
	WARN_ON(sid > NUM_TIDS);

	return ret;
}

/*
 * Check if given entry contain a valid shadow id mapping.
 * An ID mapping is considered valid only if
 * both vcpu and pcpu know this mapping.
 *
 * The caller must have preemption disabled, and keep it that way until
 * it has finished with the returned shadow id (either written into the
 * TLB or arch.shadow_pid, or discarded).
 */
static inline int local_sid_lookup(struct id *entry)
{
	if (entry && entry->val != 0 &&
	    __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
	    entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
		return entry->val;
	return -1;
}

/* Invalidate all id mappings on local core -- call with preempt disabled */
static inline void local_sid_destroy_all(void)
{
	__this_cpu_write(pcpu_last_used_sid, 0);
	memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
}

static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
	return vcpu_e500->idt;
}

static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	kfree(vcpu_e500->idt);
	vcpu_e500->idt = NULL;
}

/* Map guest pid to shadow.
 * We use PID to keep shadow of current guest non-zero PID,
 * and use PID1 to keep shadow of guest zero PID.
 * So that guest tlbe with TID=0 can be accessed at any time */
static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	preempt_disable();
	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
			get_cur_as(&vcpu_e500->vcpu),
			get_cur_pid(&vcpu_e500->vcpu),
			get_cur_pr(&vcpu_e500->vcpu), 1);
	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
			get_cur_as(&vcpu_e500->vcpu), 0,
			get_cur_pr(&vcpu_e500->vcpu), 1);
	preempt_enable();
}

/* Invalidate all mappings on vcpu */
static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));

	/* Update shadow pid when mappings are changed */
	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}

/* Invalidate one ID mapping on vcpu */
static inline void kvmppc_e500_id_table_reset_one(
			       struct kvmppc_vcpu_e500 *vcpu_e500,
			       int as, int pid, int pr)
{
	struct vcpu_id_table *idt = vcpu_e500->idt;

	BUG_ON(as >= 2);
	BUG_ON(pid >= NUM_TIDS);
	BUG_ON(pr >= 2);

	idt->id[as][pid][pr].val = 0;
	idt->id[as][pid][pr].pentry = NULL;

	/* Update shadow pid when mappings are changed */
	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
}

/*
 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
 * This function first lookup if a valid mapping exists,
 * if not, then creates a new one.
 *
 * The caller must have preemption disabled, and keep it that way until
 * it has finished with the returned shadow id (either written into the
 * TLB or arch.shadow_pid, or discarded).
 */
unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
				 unsigned int as, unsigned int gid,
				 unsigned int pr, int avoid_recursion)
{
	struct vcpu_id_table *idt = vcpu_e500->idt;
	int sid;

	BUG_ON(as >= 2);
	BUG_ON(gid >= NUM_TIDS);
	BUG_ON(pr >= 2);

	sid = local_sid_lookup(&idt->id[as][gid][pr]);

	while (sid <= 0) {
		/* No mapping yet */
		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
		if (sid <= 0) {
			_tlbil_all();
			local_sid_destroy_all();
		}

		/* Update shadow pid when mappings are changed */
		if (!avoid_recursion)
			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
	}

	return sid;
}

unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
				      struct kvm_book3e_206_tlb_entry *gtlbe)
{
	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
}

void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	if (vcpu->arch.pid != pid) {
		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
	}
}

/* gtlbe must not be mapped by more than one host tlbe */
void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
                           struct kvm_book3e_206_tlb_entry *gtlbe)
{
	struct vcpu_id_table *idt = vcpu_e500->idt;
	unsigned int pr, tid, ts;
	int pid;
	u32 val, eaddr;
	unsigned long flags;

	ts = get_tlb_ts(gtlbe);
	tid = get_tlb_tid(gtlbe);

	preempt_disable();

	/* One guest ID may be mapped to two shadow IDs */
	for (pr = 0; pr < 2; pr++) {
		/*
		 * The shadow PID can have a valid mapping on at most one
		 * host CPU.  In the common case, it will be valid on this
		 * CPU, in which case we do a local invalidation of the
		 * specific address.
		 *
		 * If the shadow PID is not valid on the current host CPU,
		 * we invalidate the entire shadow PID.
		 */
		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
		if (pid <= 0) {
			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
			continue;
		}

		/*
		 * The guest is invalidating a 4K entry which is in a PID
		 * that has a valid shadow mapping on this host CPU.  We
		 * search host TLB to invalidate it's shadow TLB entry,
		 * similar to __tlbil_va except that we need to look in AS1.
		 */
		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
		eaddr = get_tlb_eaddr(gtlbe);

		local_irq_save(flags);

		mtspr(SPRN_MAS6, val);
		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
		val = mfspr(SPRN_MAS1);
		if (val & MAS1_VALID) {
			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
			asm volatile("tlbwe");
		}

		local_irq_restore(flags);
	}

	preempt_enable();
}

void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	kvmppc_e500_id_table_reset_all(vcpu_e500);
}

void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
{
	/* Recalc shadow pid since MSR changes */
	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
}

static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
{
	kvmppc_booke_vcpu_load(vcpu, cpu);

	/* Shadow PID may be expired on local core */
	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
}

static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_SPE
	if (vcpu->arch.shadow_msr & MSR_SPE)
		kvmppc_vcpu_disable_spe(vcpu);
#endif

	kvmppc_booke_vcpu_put(vcpu);
}

int kvmppc_core_check_processor_compat(void)
{
	int r;

	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
		r = 0;
	else
		r = -ENOTSUPP;

	return r;
}

static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	struct kvm_book3e_206_tlb_entry *tlbe;

	/* Insert large initial mapping for guest. */
	tlbe = get_entry(vcpu_e500, 1, 0);
	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
	tlbe->mas2 = 0;
	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;

	/* 4K map for serial output. Used by kernel wrapper. */
	tlbe = get_entry(vcpu_e500, 1, 1);
	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
}

int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	kvmppc_e500_tlb_setup(vcpu_e500);

	/* Registers init */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	vcpu_e500->svr = mfspr(SPRN_SVR);

	vcpu->arch.cpu_type = KVM_CPU_E500V2;

	return 0;
}

static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
				      struct kvm_sregs *sregs)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
	                       KVM_SREGS_E_PM;
	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;

	sregs->u.e.impl.fsl.features = 0;
	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;

	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
	sregs->u.e.ivor_high[3] =
		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];

	kvmppc_get_sregs_ivor(vcpu, sregs);
	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
	return 0;
}

static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
				      struct kvm_sregs *sregs)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	int ret;

	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
	}

	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
	if (ret < 0)
		return ret;

	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
		return 0;

	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
			sregs->u.e.ivor_high[0];
		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
			sregs->u.e.ivor_high[1];
		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
			sregs->u.e.ivor_high[2];
	}

	if (sregs->u.e.features & KVM_SREGS_E_PM) {
		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
			sregs->u.e.ivor_high[3];
	}

	return kvmppc_set_sregs_ivor(vcpu, sregs);
}

static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
				   union kvmppc_one_reg *val)
{
	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
	return r;
}

static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
				   union kvmppc_one_reg *val)
{
	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
	return r;
}

static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
						     unsigned int id)
{
	struct kvmppc_vcpu_e500 *vcpu_e500;
	struct kvm_vcpu *vcpu;
	int err;

	vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu_e500) {
		err = -ENOMEM;
		goto out;
	}

	vcpu = &vcpu_e500->vcpu;
	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
		err = -ENOMEM;
		goto uninit_vcpu;
	}

	err = kvmppc_e500_tlb_init(vcpu_e500);
	if (err)
		goto uninit_id;

	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!vcpu->arch.shared) {
		err = -ENOMEM;
		goto uninit_tlb;
	}

	return vcpu;

uninit_tlb:
	kvmppc_e500_tlb_uninit(vcpu_e500);
uninit_id:
	kvmppc_e500_id_table_free(vcpu_e500);
uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
out:
	return ERR_PTR(err);
}

static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	free_page((unsigned long)vcpu->arch.shared);
	kvmppc_e500_tlb_uninit(vcpu_e500);
	kvmppc_e500_id_table_free(vcpu_e500);
	kvm_vcpu_uninit(vcpu);
	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
}

static int kvmppc_core_init_vm_e500(struct kvm *kvm)
{
	return 0;
}

static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
{
}

static struct kvmppc_ops kvm_ops_e500 = {
	.get_sregs = kvmppc_core_get_sregs_e500,
	.set_sregs = kvmppc_core_set_sregs_e500,
	.get_one_reg = kvmppc_get_one_reg_e500,
	.set_one_reg = kvmppc_set_one_reg_e500,
	.vcpu_load   = kvmppc_core_vcpu_load_e500,
	.vcpu_put    = kvmppc_core_vcpu_put_e500,
	.vcpu_create = kvmppc_core_vcpu_create_e500,
	.vcpu_free   = kvmppc_core_vcpu_free_e500,
	.mmu_destroy  = kvmppc_mmu_destroy_e500,
	.init_vm = kvmppc_core_init_vm_e500,
	.destroy_vm = kvmppc_core_destroy_vm_e500,
	.emulate_op = kvmppc_core_emulate_op_e500,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
};

static int __init kvmppc_e500_init(void)
{
	int r, i;
	unsigned long ivor[3];
	/* Process remaining handlers above the generic first 16 */
	unsigned long *handler = &kvmppc_booke_handler_addr[16];
	unsigned long handler_len;
	unsigned long max_ivor = 0;

	r = kvmppc_core_check_processor_compat();
	if (r)
		goto err_out;

	r = kvmppc_booke_init();
	if (r)
		goto err_out;

	/* copy extra E500 exception handlers */
	ivor[0] = mfspr(SPRN_IVOR32);
	ivor[1] = mfspr(SPRN_IVOR33);
	ivor[2] = mfspr(SPRN_IVOR34);
	for (i = 0; i < 3; i++) {
		if (ivor[i] > ivor[max_ivor])
			max_ivor = i;

		handler_len = handler[i + 1] - handler[i];
		memcpy((void *)kvmppc_booke_handlers + ivor[i],
		       (void *)handler[i], handler_len);
	}
	handler_len = handler[max_ivor + 1] - handler[max_ivor];
	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
			   ivor[max_ivor] + handler_len);

	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
	if (r)
		goto err_out;
	kvm_ops_e500.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_e500;

err_out:
	return r;
}

static void __exit kvmppc_e500_exit(void)
{
	kvmppc_pr_ops = NULL;
	kvmppc_booke_exit();
}

module_init(kvmppc_e500_init);
module_exit(kvmppc_e500_exit);
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");