summaryrefslogtreecommitdiff
path: root/arch/powerpc/kernel/eeh_cache.c
blob: 2f9dbf8ad2eebb4bf7f9bcb2ff53faf407492f28 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * PCI address cache; allows the lookup of PCI devices based on I/O address
 *
 * Copyright IBM Corporation 2004
 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
 */

#include <linux/list.h>
#include <linux/pci.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>


/**
 * DOC: Overview
 *
 * The pci address cache subsystem.  This subsystem places
 * PCI device address resources into a red-black tree, sorted
 * according to the address range, so that given only an i/o
 * address, the corresponding PCI device can be **quickly**
 * found. It is safe to perform an address lookup in an interrupt
 * context; this ability is an important feature.
 *
 * Currently, the only customer of this code is the EEH subsystem;
 * thus, this code has been somewhat tailored to suit EEH better.
 * In particular, the cache does *not* hold the addresses of devices
 * for which EEH is not enabled.
 *
 * (Implementation Note: The RB tree seems to be better/faster
 * than any hash algo I could think of for this problem, even
 * with the penalty of slow pointer chases for d-cache misses).
 */

struct pci_io_addr_range {
	struct rb_node rb_node;
	resource_size_t addr_lo;
	resource_size_t addr_hi;
	struct eeh_dev *edev;
	struct pci_dev *pcidev;
	unsigned long flags;
};

static struct pci_io_addr_cache {
	struct rb_root rb_root;
	spinlock_t piar_lock;
} pci_io_addr_cache_root;

static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
{
	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;

	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (addr < piar->addr_lo)
			n = n->rb_left;
		else if (addr > piar->addr_hi)
			n = n->rb_right;
		else
			return piar->edev;
	}

	return NULL;
}

/**
 * eeh_addr_cache_get_dev - Get device, given only address
 * @addr: mmio (PIO) phys address or i/o port number
 *
 * Given an mmio phys address, or a port number, find a pci device
 * that implements this address.  I/O port numbers are assumed to be offset
 * from zero (that is, they do *not* have pci_io_addr added in).
 * It is safe to call this function within an interrupt.
 */
struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
{
	struct eeh_dev *edev;
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	edev = __eeh_addr_cache_get_device(addr);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
	return edev;
}

#ifdef DEBUG
/*
 * Handy-dandy debug print routine, does nothing more
 * than print out the contents of our addr cache.
 */
static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
{
	struct rb_node *n;
	int cnt = 0;

	n = rb_first(&cache->rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
		pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
		cnt++;
		n = rb_next(n);
	}
}
#endif

/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
		      resource_size_t ahi, unsigned long flags)
{
	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct pci_io_addr_range *piar;

	/* Walk tree, find a place to insert into tree */
	while (*p) {
		parent = *p;
		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
		if (ahi < piar->addr_lo) {
			p = &parent->rb_left;
		} else if (alo > piar->addr_hi) {
			p = &parent->rb_right;
		} else {
			if (dev != piar->pcidev ||
			    alo != piar->addr_lo || ahi != piar->addr_hi) {
				pr_warn("PIAR: overlapping address range\n");
			}
			return piar;
		}
	}
	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
	if (!piar)
		return NULL;

	piar->addr_lo = alo;
	piar->addr_hi = ahi;
	piar->edev = pci_dev_to_eeh_dev(dev);
	piar->pcidev = dev;
	piar->flags = flags;

	eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
		 &alo, &ahi);

	rb_link_node(&piar->rb_node, parent, p);
	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);

	return piar;
}

static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
{
	struct eeh_dev *edev;
	int i;

	edev = pci_dev_to_eeh_dev(dev);
	if (!edev) {
		pr_warn("PCI: no EEH dev found for %s\n",
			pci_name(dev));
		return;
	}

	/* Skip any devices for which EEH is not enabled. */
	if (!edev->pe) {
		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
		return;
	}

	/*
	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
	 * ROM BAR) into the tree.
	 */
	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		resource_size_t start = pci_resource_start(dev,i);
		resource_size_t end = pci_resource_end(dev,i);
		unsigned long flags = pci_resource_flags(dev,i);

		/* We are interested only bus addresses, not dma or other stuff */
		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
			continue;
		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
			 continue;
		eeh_addr_cache_insert(dev, start, end, flags);
	}
}

/**
 * eeh_addr_cache_insert_dev - Add a device to the address cache
 * @dev: PCI device whose I/O addresses we are interested in.
 *
 * In order to support the fast lookup of devices based on addresses,
 * we maintain a cache of devices that can be quickly searched.
 * This routine adds a device to that cache.
 */
void eeh_addr_cache_insert_dev(struct pci_dev *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__eeh_addr_cache_insert_dev(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
{
	struct rb_node *n;

restart:
	n = rb_first(&pci_io_addr_cache_root.rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (piar->pcidev == dev) {
			eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
				 &piar->addr_lo, &piar->addr_hi);
			rb_erase(n, &pci_io_addr_cache_root.rb_root);
			kfree(piar);
			goto restart;
		}
		n = rb_next(n);
	}
}

/**
 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
 * @dev: device to remove
 *
 * Remove a device from the addr-cache tree.
 * This is potentially expensive, since it will walk
 * the tree multiple times (once per resource).
 * But so what; device removal doesn't need to be that fast.
 */
void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__eeh_addr_cache_rmv_dev(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

/**
 * eeh_addr_cache_init - Initialize a cache of I/O addresses
 *
 * Initialize a cache of pci i/o addresses.  This cache will be used to
 * find the pci device that corresponds to a given address.
 */
void eeh_addr_cache_init(void)
{
	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
}

static int eeh_addr_cache_show(struct seq_file *s, void *v)
{
	struct pci_io_addr_range *piar;
	struct rb_node *n;
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
	}
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);

void __init eeh_cache_debugfs_init(void)
{
	debugfs_create_file_unsafe("eeh_address_cache", 0400,
			arch_debugfs_dir, NULL,
			&eeh_addr_cache_fops);
}