summaryrefslogtreecommitdiff
path: root/arch/powerpc/include/asm/xive.h
blob: c23ff4389ca236c43994fe4279b7f151e80fe5e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * Copyright 2016,2017 IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#ifndef _ASM_POWERPC_XIVE_H
#define _ASM_POWERPC_XIVE_H

#define XIVE_INVALID_VP	0xffffffff

#ifdef CONFIG_PPC_XIVE

/*
 * Thread Interrupt Management Area (TIMA)
 *
 * This is a global MMIO region divided in 4 pages of varying access
 * permissions, providing access to per-cpu interrupt management
 * functions. It always identifies the CPU doing the access based
 * on the PowerBus initiator ID, thus we always access via the
 * same offset regardless of where the code is executing
 */
extern void __iomem *xive_tima;

/*
 * Offset in the TM area of our current execution level (provided by
 * the backend)
 */
extern u32 xive_tima_offset;

/*
 * Per-irq data (irq_get_handler_data for normal IRQs), IPIs
 * have it stored in the xive_cpu structure. We also cache
 * for normal interrupts the current target CPU.
 *
 * This structure is setup by the backend for each interrupt.
 */
struct xive_irq_data {
	u64 flags;
	u64 eoi_page;
	void __iomem *eoi_mmio;
	u64 trig_page;
	void __iomem *trig_mmio;
	u32 esb_shift;
	int src_chip;

	/* Setup/used by frontend */
	int target;
	bool saved_p;
};
#define XIVE_IRQ_FLAG_STORE_EOI	0x01
#define XIVE_IRQ_FLAG_LSI	0x02
#define XIVE_IRQ_FLAG_SHIFT_BUG	0x04
#define XIVE_IRQ_FLAG_MASK_FW	0x08
#define XIVE_IRQ_FLAG_EOI_FW	0x10

#define XIVE_INVALID_CHIP_ID	-1

/* A queue tracking structure in a CPU */
struct xive_q {
	__be32 			*qpage;
	u32			msk;
	u32			idx;
	u32			toggle;
	u64			eoi_phys;
	u32			esc_irq;
	atomic_t		count;
	atomic_t		pending_count;
};

/*
 * "magic" Event State Buffer (ESB) MMIO offsets.
 *
 * Each interrupt source has a 2-bit state machine called ESB
 * which can be controlled by MMIO. It's made of 2 bits, P and
 * Q. P indicates that an interrupt is pending (has been sent
 * to a queue and is waiting for an EOI). Q indicates that the
 * interrupt has been triggered while pending.
 *
 * This acts as a coalescing mechanism in order to guarantee
 * that a given interrupt only occurs at most once in a queue.
 *
 * When doing an EOI, the Q bit will indicate if the interrupt
 * needs to be re-triggered.
 *
 * The following offsets into the ESB MMIO allow to read or
 * manipulate the PQ bits. They must be used with an 8-bytes
 * load instruction. They all return the previous state of the
 * interrupt (atomically).
 *
 * Additionally, some ESB pages support doing an EOI via a
 * store at 0 and some ESBs support doing a trigger via a
 * separate trigger page.
 */
#define XIVE_ESB_STORE_EOI	0x400 /* Store */
#define XIVE_ESB_LOAD_EOI	0x000 /* Load */
#define XIVE_ESB_GET		0x800 /* Load */
#define XIVE_ESB_SET_PQ_00	0xc00 /* Load */
#define XIVE_ESB_SET_PQ_01	0xd00 /* Load */
#define XIVE_ESB_SET_PQ_10	0xe00 /* Load */
#define XIVE_ESB_SET_PQ_11	0xf00 /* Load */

#define XIVE_ESB_VAL_P		0x2
#define XIVE_ESB_VAL_Q		0x1

/* Global enable flags for the XIVE support */
extern bool __xive_enabled;

static inline bool xive_enabled(void) { return __xive_enabled; }

extern bool xive_native_init(void);
extern void xive_smp_probe(void);
extern int  xive_smp_prepare_cpu(unsigned int cpu);
extern void xive_smp_setup_cpu(void);
extern void xive_smp_disable_cpu(void);
extern void xive_kexec_teardown_cpu(int secondary);
extern void xive_shutdown(void);
extern void xive_flush_interrupt(void);

/* xmon hook */
extern void xmon_xive_do_dump(int cpu);

/* APIs used by KVM */
extern u32 xive_native_default_eq_shift(void);
extern u32 xive_native_alloc_vp_block(u32 max_vcpus);
extern void xive_native_free_vp_block(u32 vp_base);
extern int xive_native_populate_irq_data(u32 hw_irq,
					 struct xive_irq_data *data);
extern void xive_cleanup_irq_data(struct xive_irq_data *xd);
extern u32 xive_native_alloc_irq(void);
extern void xive_native_free_irq(u32 irq);
extern int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq);

extern int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
				       __be32 *qpage, u32 order, bool can_escalate);
extern void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio);

extern void xive_native_sync_source(u32 hw_irq);
extern bool is_xive_irq(struct irq_chip *chip);
extern int xive_native_enable_vp(u32 vp_id);
extern int xive_native_disable_vp(u32 vp_id);
extern int xive_native_get_vp_info(u32 vp_id, u32 *out_cam_id, u32 *out_chip_id);

#else

static inline bool xive_enabled(void) { return false; }

static inline bool xive_native_init(void) { return false; }
static inline void xive_smp_probe(void) { }
extern inline int  xive_smp_prepare_cpu(unsigned int cpu) { return -EINVAL; }
static inline void xive_smp_setup_cpu(void) { }
static inline void xive_smp_disable_cpu(void) { }
static inline void xive_kexec_teardown_cpu(int secondary) { }
static inline void xive_shutdown(void) { }
static inline void xive_flush_interrupt(void) { }

static inline u32 xive_native_alloc_vp_block(u32 max_vcpus) { return XIVE_INVALID_VP; }
static inline void xive_native_free_vp_block(u32 vp_base) { }

#endif

#endif /* _ASM_POWERPC_XIVE_H */