summaryrefslogtreecommitdiff
path: root/arch/parisc/mm/fault.c
blob: 9d08c71a967ed2e1e86189272369f4b794b8453c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 *
 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
 * Copyright 1999 Hewlett Packard Co.
 *
 */

#include <linux/mm.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/module.h>

#include <asm/uaccess.h>
#include <asm/traps.h>

#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
			 /*  dumped to the console via printk)          */


/* Various important other fields */
#define bit22set(x)		(x & 0x00000200)
#define bits23_25set(x)		(x & 0x000001c0)
#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
				/* extended opcode is 0x6a */

#define BITSSET		0x1c0	/* for identifying LDCW */


DEFINE_PER_CPU(struct exception_data, exception_data);

/*
 * parisc_acctyp(unsigned int inst) --
 *    Given a PA-RISC memory access instruction, determine if the
 *    the instruction would perform a memory read or memory write
 *    operation.
 *
 *    This function assumes that the given instruction is a memory access
 *    instruction (i.e. you should really only call it if you know that
 *    the instruction has generated some sort of a memory access fault).
 *
 * Returns:
 *   VM_READ  if read operation
 *   VM_WRITE if write operation
 *   VM_EXEC  if execute operation
 */
static unsigned long
parisc_acctyp(unsigned long code, unsigned int inst)
{
	if (code == 6 || code == 16)
	    return VM_EXEC;

	switch (inst & 0xf0000000) {
	case 0x40000000: /* load */
	case 0x50000000: /* new load */
		return VM_READ;

	case 0x60000000: /* store */
	case 0x70000000: /* new store */
		return VM_WRITE;

	case 0x20000000: /* coproc */
	case 0x30000000: /* coproc2 */
		if (bit22set(inst))
			return VM_WRITE;

	case 0x0: /* indexed/memory management */
		if (bit22set(inst)) {
			/*
			 * Check for the 'Graphics Flush Read' instruction.
			 * It resembles an FDC instruction, except for bits
			 * 20 and 21. Any combination other than zero will
			 * utilize the block mover functionality on some
			 * older PA-RISC platforms.  The case where a block
			 * move is performed from VM to graphics IO space
			 * should be treated as a READ.
			 *
			 * The significance of bits 20,21 in the FDC
			 * instruction is:
			 *
			 *   00  Flush data cache (normal instruction behavior)
			 *   01  Graphics flush write  (IO space -> VM)
			 *   10  Graphics flush read   (VM -> IO space)
			 *   11  Graphics flush read/write (VM <-> IO space)
			 */
			if (isGraphicsFlushRead(inst))
				return VM_READ;
			return VM_WRITE;
		} else {
			/*
			 * Check for LDCWX and LDCWS (semaphore instructions).
			 * If bits 23 through 25 are all 1's it is one of
			 * the above two instructions and is a write.
			 *
			 * Note: With the limited bits we are looking at,
			 * this will also catch PROBEW and PROBEWI. However,
			 * these should never get in here because they don't
			 * generate exceptions of the type:
			 *   Data TLB miss fault/data page fault
			 *   Data memory protection trap
			 */
			if (bits23_25set(inst) == BITSSET)
				return VM_WRITE;
		}
		return VM_READ; /* Default */
	}
	return VM_READ; /* Default */
}

#undef bit22set
#undef bits23_25set
#undef isGraphicsFlushRead
#undef BITSSET


#if 0
/* This is the treewalk to find a vma which is the highest that has
 * a start < addr.  We're using find_vma_prev instead right now, but
 * we might want to use this at some point in the future.  Probably
 * not, but I want it committed to CVS so I don't lose it :-)
 */
			while (tree != vm_avl_empty) {
				if (tree->vm_start > addr) {
					tree = tree->vm_avl_left;
				} else {
					prev = tree;
					if (prev->vm_next == NULL)
						break;
					if (prev->vm_next->vm_start > addr)
						break;
					tree = tree->vm_avl_right;
				}
			}
#endif

int fixup_exception(struct pt_regs *regs)
{
	const struct exception_table_entry *fix;

	/* If we only stored 32bit addresses in the exception table we can drop
	 * out if we faulted on a 64bit address. */
	if ((sizeof(regs->iaoq[0]) > sizeof(fix->insn))
		&& (regs->iaoq[0] >> 32))
			return 0;

	fix = search_exception_tables(regs->iaoq[0]);
	if (fix) {
		struct exception_data *d;
		d = &__get_cpu_var(exception_data);
		d->fault_ip = regs->iaoq[0];
		d->fault_space = regs->isr;
		d->fault_addr = regs->ior;

		regs->iaoq[0] = ((fix->fixup) & ~3);
		/*
		 * NOTE: In some cases the faulting instruction
		 * may be in the delay slot of a branch. We
		 * don't want to take the branch, so we don't
		 * increment iaoq[1], instead we set it to be
		 * iaoq[0]+4, and clear the B bit in the PSW
		 */
		regs->iaoq[1] = regs->iaoq[0] + 4;
		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */

		return 1;
	}

	return 0;
}

void do_page_fault(struct pt_regs *regs, unsigned long code,
			      unsigned long address)
{
	struct vm_area_struct *vma, *prev_vma;
	struct task_struct *tsk;
	struct mm_struct *mm;
	unsigned long acc_type;
	int fault;
	unsigned int flags;

	if (in_atomic())
		goto no_context;

	tsk = current;
	mm = tsk->mm;
	if (!mm)
		goto no_context;

	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
	if (user_mode(regs))
		flags |= FAULT_FLAG_USER;

	acc_type = parisc_acctyp(code, regs->iir);
	if (acc_type & VM_WRITE)
		flags |= FAULT_FLAG_WRITE;
retry:
	down_read(&mm->mmap_sem);
	vma = find_vma_prev(mm, address, &prev_vma);
	if (!vma || address < vma->vm_start)
		goto check_expansion;
/*
 * Ok, we have a good vm_area for this memory access. We still need to
 * check the access permissions.
 */

good_area:

	if ((vma->vm_flags & acc_type) != acc_type)
		goto bad_area;

	/*
	 * If for any reason at all we couldn't handle the fault, make
	 * sure we exit gracefully rather than endlessly redo the
	 * fault.
	 */

	fault = handle_mm_fault(mm, vma, address, flags);

	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
		return;

	if (unlikely(fault & VM_FAULT_ERROR)) {
		/*
		 * We hit a shared mapping outside of the file, or some
		 * other thing happened to us that made us unable to
		 * handle the page fault gracefully.
		 */
		if (fault & VM_FAULT_OOM)
			goto out_of_memory;
		else if (fault & VM_FAULT_SIGBUS)
			goto bad_area;
		BUG();
	}
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		if (fault & VM_FAULT_MAJOR)
			current->maj_flt++;
		else
			current->min_flt++;
		if (fault & VM_FAULT_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;

			/*
			 * No need to up_read(&mm->mmap_sem) as we would
			 * have already released it in __lock_page_or_retry
			 * in mm/filemap.c.
			 */

			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
	return;

check_expansion:
	vma = prev_vma;
	if (vma && (expand_stack(vma, address) == 0))
		goto good_area;

/*
 * Something tried to access memory that isn't in our memory map..
 */
bad_area:
	up_read(&mm->mmap_sem);

	if (user_mode(regs)) {
		struct siginfo si;

#ifdef PRINT_USER_FAULTS
		printk(KERN_DEBUG "\n");
		printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
		    task_pid_nr(tsk), tsk->comm, code, address);
		if (vma) {
			printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
					vma->vm_start, vma->vm_end);
		}
		show_regs(regs);
#endif
		switch (code) {
		case 15:	/* Data TLB miss fault/Data page fault */
			/* send SIGSEGV when outside of vma */
			if (!vma ||
			    address < vma->vm_start || address > vma->vm_end) {
				si.si_signo = SIGSEGV;
				si.si_code = SEGV_MAPERR;
				break;
			}

			/* send SIGSEGV for wrong permissions */
			if ((vma->vm_flags & acc_type) != acc_type) {
				si.si_signo = SIGSEGV;
				si.si_code = SEGV_ACCERR;
				break;
			}

			/* probably address is outside of mapped file */
			/* fall through */
		case 17:	/* NA data TLB miss / page fault */
		case 18:	/* Unaligned access - PCXS only */
			si.si_signo = SIGBUS;
			si.si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
			break;
		case 16:	/* Non-access instruction TLB miss fault */
		case 26:	/* PCXL: Data memory access rights trap */
		default:
			si.si_signo = SIGSEGV;
			si.si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
			break;
		}
		si.si_errno = 0;
		si.si_addr = (void __user *) address;
		force_sig_info(si.si_signo, &si, current);
		return;
	}

no_context:

	if (!user_mode(regs) && fixup_exception(regs)) {
		return;
	}

	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);

  out_of_memory:
	up_read(&mm->mmap_sem);
	if (!user_mode(regs))
		goto no_context;
	pagefault_out_of_memory();
}