summaryrefslogtreecommitdiff
path: root/arch/mn10300/kernel/fpu.c
blob: e705f25ad5ff7e5e44b8da939d989b778ca77f6e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/* MN10300 FPU management
 *
 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */
#include <asm/uaccess.h>
#include <asm/fpu.h>
#include <asm/elf.h>
#include <asm/exceptions.h>

struct task_struct *fpu_state_owner;

/*
 * handle an exception due to the FPU being disabled
 */
asmlinkage void fpu_disabled(struct pt_regs *regs, enum exception_code code)
{
	struct task_struct *tsk = current;

	if (!user_mode(regs))
		die_if_no_fixup("An FPU Disabled exception happened in"
				" kernel space\n",
				regs, code);

#ifdef CONFIG_FPU
	preempt_disable();

	/* transfer the last process's FPU state to memory */
	if (fpu_state_owner) {
		fpu_save(&fpu_state_owner->thread.fpu_state);
		fpu_state_owner->thread.uregs->epsw &= ~EPSW_FE;
	}

	/* the current process now owns the FPU state */
	fpu_state_owner = tsk;
	regs->epsw |= EPSW_FE;

	/* load the FPU with the current process's FPU state or invent a new
	 * clean one if the process doesn't have one */
	if (is_using_fpu(tsk)) {
		fpu_restore(&tsk->thread.fpu_state);
	} else {
		fpu_init_state();
		set_using_fpu(tsk);
	}

	preempt_enable();
#else
	{
		siginfo_t info;

		info.si_signo = SIGFPE;
		info.si_errno = 0;
		info.si_addr = (void *) tsk->thread.uregs->pc;
		info.si_code = FPE_FLTINV;

		force_sig_info(SIGFPE, &info, tsk);
	}
#endif  /* CONFIG_FPU */
}

/*
 * handle an FPU operational exception
 * - there's a possibility that if the FPU is asynchronous, the signal might
 *   be meant for a process other than the current one
 */
asmlinkage void fpu_exception(struct pt_regs *regs, enum exception_code code)
{
	struct task_struct *tsk = fpu_state_owner;
	siginfo_t info;

	if (!user_mode(regs))
		die_if_no_fixup("An FPU Operation exception happened in"
				" kernel space\n",
				regs, code);

	if (!tsk)
		die_if_no_fixup("An FPU Operation exception happened,"
				" but the FPU is not in use",
				regs, code);

	info.si_signo = SIGFPE;
	info.si_errno = 0;
	info.si_addr = (void *) tsk->thread.uregs->pc;
	info.si_code = FPE_FLTINV;

#ifdef CONFIG_FPU
	{
		u32 fpcr;

		/* get FPCR (we need to enable the FPU whilst we do this) */
		asm volatile("	or	%1,epsw		\n"
#ifdef CONFIG_MN10300_PROC_MN103E010
			     "	nop			\n"
			     "	nop			\n"
			     "	nop			\n"
#endif
			     "	fmov	fpcr,%0		\n"
#ifdef CONFIG_MN10300_PROC_MN103E010
			     "	nop			\n"
			     "	nop			\n"
			     "	nop			\n"
#endif
			     "	and	%2,epsw		\n"
			     : "=&d"(fpcr)
			     : "i"(EPSW_FE), "i"(~EPSW_FE)
			     );

		if (fpcr & FPCR_EC_Z)
			info.si_code = FPE_FLTDIV;
		else if	(fpcr & FPCR_EC_O)
			info.si_code = FPE_FLTOVF;
		else if	(fpcr & FPCR_EC_U)
			info.si_code = FPE_FLTUND;
		else if	(fpcr & FPCR_EC_I)
			info.si_code = FPE_FLTRES;
	}
#endif

	force_sig_info(SIGFPE, &info, tsk);
}

/*
 * save the FPU state to a signal context
 */
int fpu_setup_sigcontext(struct fpucontext *fpucontext)
{
#ifdef CONFIG_FPU
	struct task_struct *tsk = current;

	if (!is_using_fpu(tsk))
		return 0;

	/* transfer the current FPU state to memory and cause fpu_init() to be
	 * triggered by the next attempted FPU operation by the current
	 * process.
	 */
	preempt_disable();

	if (fpu_state_owner == tsk) {
		fpu_save(&tsk->thread.fpu_state);
		fpu_state_owner->thread.uregs->epsw &= ~EPSW_FE;
		fpu_state_owner = NULL;
	}

	preempt_enable();

	/* we no longer have a valid current FPU state */
	clear_using_fpu(tsk);

	/* transfer the saved FPU state onto the userspace stack */
	if (copy_to_user(fpucontext,
			 &tsk->thread.fpu_state,
			 min(sizeof(struct fpu_state_struct),
			     sizeof(struct fpucontext))))
		return -1;

	return 1;
#else
	return 0;
#endif
}

/*
 * kill a process's FPU state during restoration after signal handling
 */
void fpu_kill_state(struct task_struct *tsk)
{
#ifdef CONFIG_FPU
	/* disown anything left in the FPU */
	preempt_disable();

	if (fpu_state_owner == tsk) {
		fpu_state_owner->thread.uregs->epsw &= ~EPSW_FE;
		fpu_state_owner = NULL;
	}

	preempt_enable();
#endif
	/* we no longer have a valid current FPU state */
	clear_using_fpu(tsk);
}

/*
 * restore the FPU state from a signal context
 */
int fpu_restore_sigcontext(struct fpucontext *fpucontext)
{
	struct task_struct *tsk = current;
	int ret;

	/* load up the old FPU state */
	ret = copy_from_user(&tsk->thread.fpu_state,
			     fpucontext,
			     min(sizeof(struct fpu_state_struct),
				 sizeof(struct fpucontext)));
	if (!ret)
		set_using_fpu(tsk);

	return ret;
}

/*
 * fill in the FPU structure for a core dump
 */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpreg)
{
	struct task_struct *tsk = current;
	int fpvalid;

	fpvalid = is_using_fpu(tsk);
	if (fpvalid) {
		unlazy_fpu(tsk);
		memcpy(fpreg, &tsk->thread.fpu_state, sizeof(*fpreg));
	}

	return fpvalid;
}