summaryrefslogtreecommitdiff
path: root/arch/mips/kernel/time.c
blob: 42c94c771afbe519ba538701be327a541463667b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
 * Copyright 2001 MontaVista Software Inc.
 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 * Copyright (c) 2003, 2004  Maciej W. Rozycki
 *
 * Common time service routines for MIPS machines. See
 * Documentation/mips/time.README.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */
#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/param.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/module.h>

#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/compiler.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/div64.h>
#include <asm/sections.h>
#include <asm/time.h>

/*
 * The integer part of the number of usecs per jiffy is taken from tick,
 * but the fractional part is not recorded, so we calculate it using the
 * initial value of HZ.  This aids systems where tick isn't really an
 * integer (e.g. for HZ = 128).
 */
#define USECS_PER_JIFFY		TICK_SIZE
#define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))

#define TICK_SIZE	(tick_nsec / 1000)

/*
 * forward reference
 */
extern volatile unsigned long wall_jiffies;

DEFINE_SPINLOCK(rtc_lock);

/*
 * By default we provide the null RTC ops
 */
static unsigned long null_rtc_get_time(void)
{
	return mktime(2000, 1, 1, 0, 0, 0);
}

static int null_rtc_set_time(unsigned long sec)
{
	return 0;
}

unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
int (*rtc_set_mmss)(unsigned long);


/* usecs per counter cycle, shifted to left by 32 bits */
static unsigned int sll32_usecs_per_cycle;

/* how many counter cycles in a jiffy */
static unsigned long cycles_per_jiffy __read_mostly;

/* Cycle counter value at the previous timer interrupt.. */
static unsigned int timerhi, timerlo;

/* expirelo is the count value for next CPU timer interrupt */
static unsigned int expirelo;


/*
 * Null timer ack for systems not needing one (e.g. i8254).
 */
static void null_timer_ack(void) { /* nothing */ }

/*
 * Null high precision timer functions for systems lacking one.
 */
static unsigned int null_hpt_read(void)
{
	return 0;
}

static void null_hpt_init(unsigned int count)
{
	/* nothing */
}


/*
 * Timer ack for an R4k-compatible timer of a known frequency.
 */
static void c0_timer_ack(void)
{
	unsigned int count;

#ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
	/* Ack this timer interrupt and set the next one.  */
	expirelo += cycles_per_jiffy;
#endif
	write_c0_compare(expirelo);

	/* Check to see if we have missed any timer interrupts.  */
	count = read_c0_count();
	if ((count - expirelo) < 0x7fffffff) {
		/* missed_timer_count++; */
		expirelo = count + cycles_per_jiffy;
		write_c0_compare(expirelo);
	}
}

/*
 * High precision timer functions for a R4k-compatible timer.
 */
static unsigned int c0_hpt_read(void)
{
	return read_c0_count();
}

/* For use solely as a high precision timer.  */
static void c0_hpt_init(unsigned int count)
{
	write_c0_count(read_c0_count() - count);
}

/* For use both as a high precision timer and an interrupt source.  */
static void c0_hpt_timer_init(unsigned int count)
{
	count = read_c0_count() - count;
	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
	write_c0_count(expirelo - cycles_per_jiffy);
	write_c0_compare(expirelo);
	write_c0_count(count);
}

int (*mips_timer_state)(void);
void (*mips_timer_ack)(void);
unsigned int (*mips_hpt_read)(void);
void (*mips_hpt_init)(unsigned int);


/*
 * This version of gettimeofday has microsecond resolution and better than
 * microsecond precision on fast machines with cycle counter.
 */
void do_gettimeofday(struct timeval *tv)
{
	unsigned long seq;
	unsigned long lost;
	unsigned long usec, sec;
	unsigned long max_ntp_tick;

	do {
		seq = read_seqbegin(&xtime_lock);

		usec = do_gettimeoffset();

		lost = jiffies - wall_jiffies;

		/*
		 * If time_adjust is negative then NTP is slowing the clock
		 * so make sure not to go into next possible interval.
		 * Better to lose some accuracy than have time go backwards..
		 */
		if (unlikely(time_adjust < 0)) {
			max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
			usec = min(usec, max_ntp_tick);

			if (lost)
				usec += lost * max_ntp_tick;
		} else if (unlikely(lost))
			usec += lost * (USEC_PER_SEC / HZ);

		sec = xtime.tv_sec;
		usec += (xtime.tv_nsec / 1000);

	} while (read_seqretry(&xtime_lock, seq));

	while (usec >= 1000000) {
		usec -= 1000000;
		sec++;
	}

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

EXPORT_SYMBOL(do_gettimeofday);

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irq(&xtime_lock);

	/*
	 * This is revolting.  We need to set "xtime" correctly.  However,
	 * the value in this location is the value at the most recent update
	 * of wall time.  Discover what correction gettimeofday() would have
	 * made, and then undo it!
	 */
	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
	nsec -= (jiffies - wall_jiffies) * tick_nsec;

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	ntp_clear();
	write_sequnlock_irq(&xtime_lock);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/*
 * Gettimeoffset routines.  These routines returns the time duration
 * since last timer interrupt in usecs.
 *
 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
 * Otherwise use calibrate_gettimeoffset()
 *
 * If the CPU does not have the counter register, you can either supply
 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
 * gives the same resolution as HZ.
 */

static unsigned long null_gettimeoffset(void)
{
	return 0;
}


/* The function pointer to one of the gettimeoffset funcs.  */
unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;


static unsigned long fixed_rate_gettimeoffset(void)
{
	u32 count;
	unsigned long res;

	/* Get last timer tick in absolute kernel time */
	count = mips_hpt_read();

	/* .. relative to previous jiffy (32 bits is enough) */
	count -= timerlo;

	__asm__("multu	%1,%2"
		: "=h" (res)
		: "r" (count), "r" (sll32_usecs_per_cycle)
		: "lo", GCC_REG_ACCUM);

	/*
	 * Due to possible jiffies inconsistencies, we need to check
	 * the result so that we'll get a timer that is monotonic.
	 */
	if (res >= USECS_PER_JIFFY)
		res = USECS_PER_JIFFY - 1;

	return res;
}


/*
 * Cached "1/(clocks per usec) * 2^32" value.
 * It has to be recalculated once each jiffy.
 */
static unsigned long cached_quotient;

/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
static unsigned long last_jiffies;

/*
 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
 */
static unsigned long calibrate_div32_gettimeoffset(void)
{
	u32 count;
	unsigned long res, tmp;
	unsigned long quotient;

	tmp = jiffies;

	quotient = cached_quotient;

	if (last_jiffies != tmp) {
		last_jiffies = tmp;
		if (last_jiffies != 0) {
			unsigned long r0;
			do_div64_32(r0, timerhi, timerlo, tmp);
			do_div64_32(quotient, USECS_PER_JIFFY,
				    USECS_PER_JIFFY_FRAC, r0);
			cached_quotient = quotient;
		}
	}

	/* Get last timer tick in absolute kernel time */
	count = mips_hpt_read();

	/* .. relative to previous jiffy (32 bits is enough) */
	count -= timerlo;

	__asm__("multu  %1,%2"
		: "=h" (res)
		: "r" (count), "r" (quotient)
		: "lo", GCC_REG_ACCUM);

	/*
	 * Due to possible jiffies inconsistencies, we need to check
	 * the result so that we'll get a timer that is monotonic.
	 */
	if (res >= USECS_PER_JIFFY)
		res = USECS_PER_JIFFY - 1;

	return res;
}

static unsigned long calibrate_div64_gettimeoffset(void)
{
	u32 count;
	unsigned long res, tmp;
	unsigned long quotient;

	tmp = jiffies;

	quotient = cached_quotient;

	if (last_jiffies != tmp) {
		last_jiffies = tmp;
		if (last_jiffies) {
			unsigned long r0;
			__asm__(".set	push\n\t"
				".set	mips3\n\t"
				"lwu	%0,%3\n\t"
				"dsll32	%1,%2,0\n\t"
				"or	%1,%1,%0\n\t"
				"ddivu	$0,%1,%4\n\t"
				"mflo	%1\n\t"
				"dsll32	%0,%5,0\n\t"
				"or	%0,%0,%6\n\t"
				"ddivu	$0,%0,%1\n\t"
				"mflo	%0\n\t"
				".set	pop"
				: "=&r" (quotient), "=&r" (r0)
				: "r" (timerhi), "m" (timerlo),
				  "r" (tmp), "r" (USECS_PER_JIFFY),
				  "r" (USECS_PER_JIFFY_FRAC)
				: "hi", "lo", GCC_REG_ACCUM);
			cached_quotient = quotient;
		}
	}

	/* Get last timer tick in absolute kernel time */
	count = mips_hpt_read();

	/* .. relative to previous jiffy (32 bits is enough) */
	count -= timerlo;

	__asm__("multu	%1,%2"
		: "=h" (res)
		: "r" (count), "r" (quotient)
		: "lo", GCC_REG_ACCUM);

	/*
	 * Due to possible jiffies inconsistencies, we need to check
	 * the result so that we'll get a timer that is monotonic.
	 */
	if (res >= USECS_PER_JIFFY)
		res = USECS_PER_JIFFY - 1;

	return res;
}


/* last time when xtime and rtc are sync'ed up */
static long last_rtc_update;

/*
 * local_timer_interrupt() does profiling and process accounting
 * on a per-CPU basis.
 *
 * In UP mode, it is invoked from the (global) timer_interrupt.
 *
 * In SMP mode, it might invoked by per-CPU timer interrupt, or
 * a broadcasted inter-processor interrupt which itself is triggered
 * by the global timer interrupt.
 */
void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	if (current->pid)
		profile_tick(CPU_PROFILING, regs);
	update_process_times(user_mode(regs));
}

/*
 * High-level timer interrupt service routines.  This function
 * is set as irqaction->handler and is invoked through do_IRQ.
 */
irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	unsigned long j;
	unsigned int count;

	count = mips_hpt_read();
	mips_timer_ack();

	/* Update timerhi/timerlo for intra-jiffy calibration. */
	timerhi += count < timerlo;			/* Wrap around */
	timerlo = count;

	/*
	 * call the generic timer interrupt handling
	 */
	do_timer(regs);

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
	write_seqlock(&xtime_lock);
	if (ntp_synced() &&
	    xtime.tv_sec > last_rtc_update + 660 &&
	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
		if (rtc_set_mmss(xtime.tv_sec) == 0) {
			last_rtc_update = xtime.tv_sec;
		} else {
			/* do it again in 60 s */
			last_rtc_update = xtime.tv_sec - 600;
		}
	}
	write_sequnlock(&xtime_lock);

	/*
	 * If jiffies has overflown in this timer_interrupt, we must
	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
	 * quotient calc still valid. -arca
	 *
	 * The first timer interrupt comes late as interrupts are
	 * enabled long after timers are initialized.  Therefore the
	 * high precision timer is fast, leading to wrong gettimeoffset()
	 * calculations.  We deal with it by setting it based on the
	 * number of its ticks between the second and the third interrupt.
	 * That is still somewhat imprecise, but it's a good estimate.
	 * --macro
	 */
	j = jiffies;
	if (j < 4) {
		static unsigned int prev_count;
		static int hpt_initialized;

		switch (j) {
		case 0:
			timerhi = timerlo = 0;
			mips_hpt_init(count);
			break;
		case 2:
			prev_count = count;
			break;
		case 3:
			if (!hpt_initialized) {
				unsigned int c3 = 3 * (count - prev_count);

				timerhi = 0;
				timerlo = c3;
				mips_hpt_init(count - c3);
				hpt_initialized = 1;
			}
			break;
		default:
			break;
		}
	}

	/*
	 * In UP mode, we call local_timer_interrupt() to do profiling
	 * and process accouting.
	 *
	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
	 * low-level local timer interrupt handler.
	 */
	local_timer_interrupt(irq, dev_id, regs);

	return IRQ_HANDLED;
}

int null_perf_irq(struct pt_regs *regs)
{
	return 0;
}

int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;

EXPORT_SYMBOL(null_perf_irq);
EXPORT_SYMBOL(perf_irq);

asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
{
	int r2 = cpu_has_mips_r2;

	irq_enter();
	kstat_this_cpu.irqs[irq]++;

	/*
	 * Suckage alert:
	 * Before R2 of the architecture there was no way to see if a
	 * performance counter interrupt was pending, so we have to run the
	 * performance counter interrupt handler anyway.
	 */
	if (!r2 || (read_c0_cause() & (1 << 26)))
		if (perf_irq(regs))
			goto out;

	/* we keep interrupt disabled all the time */
	if (!r2 || (read_c0_cause() & (1 << 30)))
		timer_interrupt(irq, NULL, regs);

out:
	irq_exit();
}

asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
{
	irq_enter();
	if (smp_processor_id() != 0)
		kstat_this_cpu.irqs[irq]++;

	/* we keep interrupt disabled all the time */
	local_timer_interrupt(irq, NULL, regs);

	irq_exit();
}

/*
 * time_init() - it does the following things.
 *
 * 1) board_time_init() -
 * 	a) (optional) set up RTC routines,
 *      b) (optional) calibrate and set the mips_hpt_frequency
 *	    (only needed if you intended to use fixed_rate_gettimeoffset
 *	     or use cpu counter as timer interrupt source)
 * 2) setup xtime based on rtc_get_time().
 * 3) choose a appropriate gettimeoffset routine.
 * 4) calculate a couple of cached variables for later usage
 * 5) board_timer_setup() -
 *	a) (optional) over-write any choices made above by time_init().
 *	b) machine specific code should setup the timer irqaction.
 *	c) enable the timer interrupt
 */

void (*board_time_init)(void);
void (*board_timer_setup)(struct irqaction *irq);

unsigned int mips_hpt_frequency;

static struct irqaction timer_irqaction = {
	.handler = timer_interrupt,
	.flags = SA_INTERRUPT,
	.name = "timer",
};

static unsigned int __init calibrate_hpt(void)
{
	u64 frequency;
	u32 hpt_start, hpt_end, hpt_count, hz;

	const int loops = HZ / 10;
	int log_2_loops = 0;
	int i;

	/*
	 * We want to calibrate for 0.1s, but to avoid a 64-bit
	 * division we round the number of loops up to the nearest
	 * power of 2.
	 */
	while (loops > 1 << log_2_loops)
		log_2_loops++;
	i = 1 << log_2_loops;

	/*
	 * Wait for a rising edge of the timer interrupt.
	 */
	while (mips_timer_state());
	while (!mips_timer_state());

	/*
	 * Now see how many high precision timer ticks happen
	 * during the calculated number of periods between timer
	 * interrupts.
	 */
	hpt_start = mips_hpt_read();
	do {
		while (mips_timer_state());
		while (!mips_timer_state());
	} while (--i);
	hpt_end = mips_hpt_read();

	hpt_count = hpt_end - hpt_start;
	hz = HZ;
	frequency = (u64)hpt_count * (u64)hz;

	return frequency >> log_2_loops;
}

void __init time_init(void)
{
	if (board_time_init)
		board_time_init();

	if (!rtc_set_mmss)
		rtc_set_mmss = rtc_set_time;

	xtime.tv_sec = rtc_get_time();
	xtime.tv_nsec = 0;

	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);

	/* Choose appropriate high precision timer routines.  */
	if (!cpu_has_counter && !mips_hpt_read) {
		/* No high precision timer -- sorry.  */
		mips_hpt_read = null_hpt_read;
		mips_hpt_init = null_hpt_init;
	} else if (!mips_hpt_frequency && !mips_timer_state) {
		/* A high precision timer of unknown frequency.  */
		if (!mips_hpt_read) {
			/* No external high precision timer -- use R4k.  */
			mips_hpt_read = c0_hpt_read;
			mips_hpt_init = c0_hpt_init;
		}

		if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
		    (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
		    (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
			/*
			 * We need to calibrate the counter but we don't have
			 * 64-bit division.
			 */
			do_gettimeoffset = calibrate_div32_gettimeoffset;
		else
			/*
			 * We need to calibrate the counter but we *do* have
			 * 64-bit division.
			 */
			do_gettimeoffset = calibrate_div64_gettimeoffset;
	} else {
		/* We know counter frequency.  Or we can get it.  */
		if (!mips_hpt_read) {
			/* No external high precision timer -- use R4k.  */
			mips_hpt_read = c0_hpt_read;

			if (mips_timer_state)
				mips_hpt_init = c0_hpt_init;
			else {
				/* No external timer interrupt -- use R4k.  */
				mips_hpt_init = c0_hpt_timer_init;
				mips_timer_ack = c0_timer_ack;
			}
		}
		if (!mips_hpt_frequency)
			mips_hpt_frequency = calibrate_hpt();

		do_gettimeoffset = fixed_rate_gettimeoffset;

		/* Calculate cache parameters.  */
		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;

		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
		do_div64_32(sll32_usecs_per_cycle,
			    1000000, mips_hpt_frequency / 2,
			    mips_hpt_frequency);

		/* Report the high precision timer rate for a reference.  */
		printk("Using %u.%03u MHz high precision timer.\n",
		       ((mips_hpt_frequency + 500) / 1000) / 1000,
		       ((mips_hpt_frequency + 500) / 1000) % 1000);
	}

	if (!mips_timer_ack)
		/* No timer interrupt ack (e.g. i8254).  */
		mips_timer_ack = null_timer_ack;

	/* This sets up the high precision timer for the first interrupt.  */
	mips_hpt_init(mips_hpt_read());

	/*
	 * Call board specific timer interrupt setup.
	 *
	 * this pointer must be setup in machine setup routine.
	 *
	 * Even if a machine chooses to use a low-level timer interrupt,
	 * it still needs to setup the timer_irqaction.
	 * In that case, it might be better to set timer_irqaction.handler
	 * to be NULL function so that we are sure the high-level code
	 * is not invoked accidentally.
	 */
	board_timer_setup(&timer_irqaction);
}

#define FEBRUARY		2
#define STARTOFTIME		1970
#define SECDAY			86400L
#define SECYR			(SECDAY * 365)
#define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
#define days_in_year(y)		(leapyear(y) ? 366 : 365)
#define days_in_month(m)	(month_days[(m) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(unsigned long tim, struct rtc_time *tm)
{
	long hms, day, gday;
	int i;

	gday = day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
}

EXPORT_SYMBOL(rtc_lock);
EXPORT_SYMBOL(to_tm);
EXPORT_SYMBOL(rtc_set_time);
EXPORT_SYMBOL(rtc_get_time);

unsigned long long sched_clock(void)
{
	return (unsigned long long)jiffies*(1000000000/HZ);
}