blob: 89d58d80b77bb18da88124d03963381922de58d8 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
/*
* Copyright (C) 2014 Imagination Technologies
* Author: Paul Burton <paul.burton@imgtec.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef __MIPS_ASM_PM_CPS_H__
#define __MIPS_ASM_PM_CPS_H__
/*
* The CM & CPC can only handle coherence & power control on a per-core basis,
* thus in an MT system the VP(E)s within each core are coupled and can only
* enter or exit states requiring CM or CPC assistance in unison.
*/
#if defined(CONFIG_CPU_MIPSR6)
# define coupled_coherence cpu_has_vp
#elif defined(CONFIG_MIPS_MT)
# define coupled_coherence cpu_has_mipsmt
#else
# define coupled_coherence 0
#endif
/* Enumeration of possible PM states */
enum cps_pm_state {
CPS_PM_NC_WAIT, /* MIPS wait instruction, non-coherent */
CPS_PM_CLOCK_GATED, /* Core clock gated */
CPS_PM_POWER_GATED, /* Core power gated */
CPS_PM_STATE_COUNT,
};
/**
* cps_pm_support_state - determine whether the system supports a PM state
* @state: the state to test for support
*
* Returns true if the system supports the given state, otherwise false.
*/
extern bool cps_pm_support_state(enum cps_pm_state state);
/**
* cps_pm_enter_state - enter a PM state
* @state: the state to enter
*
* Enter the given PM state. If coupled_coherence is non-zero then it is
* expected that this function be called at approximately the same time on
* each coupled CPU. Returns 0 on successful entry & exit, otherwise -errno.
*/
extern int cps_pm_enter_state(enum cps_pm_state state);
#endif /* __MIPS_ASM_PM_CPS_H__ */
|