summaryrefslogtreecommitdiff
path: root/arch/ia64/sn/kernel/bte.c
blob: e952ef4f6d912dd361b7360d5a87df78f0f00f09 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.  All Rights Reserved.
 */

#include <linux/config.h>
#include <linux/module.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/addrs.h>
#include <asm/sn/arch.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/pda.h>
#include <asm/sn/shubio.h>
#include <asm/nodedata.h>
#include <asm/delay.h>

#include <linux/bootmem.h>
#include <linux/string.h>
#include <linux/sched.h>

#include <asm/sn/bte.h>

#ifndef L1_CACHE_MASK
#define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
#endif

/* two interfaces on two btes */
#define MAX_INTERFACES_TO_TRY		4
#define MAX_NODES_TO_TRY		2

static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
{
	nodepda_t *tmp_nodepda;

	if (nasid_to_cnodeid(nasid) == -1)
		return (struct bteinfo_s *)NULL;

	tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
	return &tmp_nodepda->bte_if[interface];

}

static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
{
	if (is_shub2()) {
		BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
	} else {
		BTE_LNSTAT_STORE(bte, len);
		BTE_CTRL_STORE(bte, mode);
	}
}

/************************************************************************
 * Block Transfer Engine copy related functions.
 *
 ***********************************************************************/

/*
 * bte_copy(src, dest, len, mode, notification)
 *
 * Use the block transfer engine to move kernel memory from src to dest
 * using the assigned mode.
 *
 * Paramaters:
 *   src - physical address of the transfer source.
 *   dest - physical address of the transfer destination.
 *   len - number of bytes to transfer from source to dest.
 *   mode - hardware defined.  See reference information
 *          for IBCT0/1 in the SHUB Programmers Reference
 *   notification - kernel virtual address of the notification cache
 *                  line.  If NULL, the default is used and
 *                  the bte_copy is synchronous.
 *
 * NOTE:  This function requires src, dest, and len to
 * be cacheline aligned.
 */
bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
{
	u64 transfer_size;
	u64 transfer_stat;
	u64 notif_phys_addr;
	struct bteinfo_s *bte;
	bte_result_t bte_status;
	unsigned long irq_flags;
	unsigned long itc_end = 0;
	int nasid_to_try[MAX_NODES_TO_TRY];
	int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
	int bte_if_index, nasid_index;
	int bte_first, btes_per_node = BTES_PER_NODE;

	BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
		    src, dest, len, mode, notification));

	if (len == 0) {
		return BTE_SUCCESS;
	}

	BUG_ON((len & L1_CACHE_MASK) ||
		 (src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
	BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));

	/*
	 * Start with interface corresponding to cpu number
	 */
	bte_first = raw_smp_processor_id() % btes_per_node;

	if (mode & BTE_USE_DEST) {
		/* try remote then local */
		nasid_to_try[0] = NASID_GET(dest);
		if (mode & BTE_USE_ANY) {
			nasid_to_try[1] = my_nasid;
		} else {
			nasid_to_try[1] = (int)NULL;
		}
	} else {
		/* try local then remote */
		nasid_to_try[0] = my_nasid;
		if (mode & BTE_USE_ANY) {
			nasid_to_try[1] = NASID_GET(dest);
		} else {
			nasid_to_try[1] = (int)NULL;
		}
	}

retry_bteop:
	do {
		local_irq_save(irq_flags);

		bte_if_index = bte_first;
		nasid_index = 0;

		/* Attempt to lock one of the BTE interfaces. */
		while (nasid_index < MAX_NODES_TO_TRY) {
			bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);

			if (bte == NULL) {
				nasid_index++;
				continue;
			}

			if (spin_trylock(&bte->spinlock)) {
				if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
				    (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
					/* Got the lock but BTE still busy */
					spin_unlock(&bte->spinlock);
				} else {
					/* we got the lock and it's not busy */
					break;
				}
			}

			bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
			if (bte_if_index == bte_first) {
				/*
				 * We've tried all interfaces on this node
				 */
				nasid_index++;
			}

			bte = NULL;
		}

		if (bte != NULL) {
			break;
		}

		local_irq_restore(irq_flags);

		if (!(mode & BTE_WACQUIRE)) {
			return BTEFAIL_NOTAVAIL;
		}
	} while (1);

	if (notification == NULL) {
		/* User does not want to be notified. */
		bte->most_rcnt_na = &bte->notify;
	} else {
		bte->most_rcnt_na = notification;
	}

	/* Calculate the number of cache lines to transfer. */
	transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);

	/* Initialize the notification to a known value. */
	*bte->most_rcnt_na = BTE_WORD_BUSY;
	notif_phys_addr = (u64)bte->most_rcnt_na;

	/* Set the source and destination registers */
	BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
	BTE_SRC_STORE(bte, src);
	BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
	BTE_DEST_STORE(bte, dest);

	/* Set the notification register */
	BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
	BTE_NOTIF_STORE(bte, notif_phys_addr);

	/* Initiate the transfer */
	BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
	bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));

	itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);

	spin_unlock_irqrestore(&bte->spinlock, irq_flags);

	if (notification != NULL) {
		return BTE_SUCCESS;
	}

	while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
		cpu_relax();
		if (ia64_get_itc() > itc_end) {
			BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
				NASID_GET(bte->bte_base_addr), bte->bte_num,
				BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
			bte->bte_error_count++;
			bte->bh_error = IBLS_ERROR;
			bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
			*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
			goto retry_bteop;
		}
	}

	BTE_PRINTKV((" Delay Done.  IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
		     BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));

	if (transfer_stat & IBLS_ERROR) {
		bte_status = transfer_stat & ~IBLS_ERROR;
	} else {
		bte_status = BTE_SUCCESS;
	}
	*bte->most_rcnt_na = BTE_WORD_AVAILABLE;

	BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
		    BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));

	return bte_status;
}

EXPORT_SYMBOL(bte_copy);

/*
 * bte_unaligned_copy(src, dest, len, mode)
 *
 * use the block transfer engine to move kernel
 * memory from src to dest using the assigned mode.
 *
 * Paramaters:
 *   src - physical address of the transfer source.
 *   dest - physical address of the transfer destination.
 *   len - number of bytes to transfer from source to dest.
 *   mode - hardware defined.  See reference information
 *          for IBCT0/1 in the SGI documentation.
 *
 * NOTE: If the source, dest, and len are all cache line aligned,
 * then it would be _FAR_ preferrable to use bte_copy instead.
 */
bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
{
	int destFirstCacheOffset;
	u64 headBteSource;
	u64 headBteLen;
	u64 headBcopySrcOffset;
	u64 headBcopyDest;
	u64 headBcopyLen;
	u64 footBteSource;
	u64 footBteLen;
	u64 footBcopyDest;
	u64 footBcopyLen;
	bte_result_t rv;
	char *bteBlock, *bteBlock_unaligned;

	if (len == 0) {
		return BTE_SUCCESS;
	}

	/* temporary buffer used during unaligned transfers */
	bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES,
				     GFP_KERNEL | GFP_DMA);
	if (bteBlock_unaligned == NULL) {
		return BTEFAIL_NOTAVAIL;
	}
	bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);

	headBcopySrcOffset = src & L1_CACHE_MASK;
	destFirstCacheOffset = dest & L1_CACHE_MASK;

	/*
	 * At this point, the transfer is broken into
	 * (up to) three sections.  The first section is
	 * from the start address to the first physical
	 * cache line, the second is from the first physical
	 * cache line to the last complete cache line,
	 * and the third is from the last cache line to the
	 * end of the buffer.  The first and third sections
	 * are handled by bte copying into a temporary buffer
	 * and then bcopy'ing the necessary section into the
	 * final location.  The middle section is handled with
	 * a standard bte copy.
	 *
	 * One nasty exception to the above rule is when the
	 * source and destination are not symetrically
	 * mis-aligned.  If the source offset from the first
	 * cache line is different from the destination offset,
	 * we make the first section be the entire transfer
	 * and the bcopy the entire block into place.
	 */
	if (headBcopySrcOffset == destFirstCacheOffset) {

		/*
		 * Both the source and destination are the same
		 * distance from a cache line boundary so we can
		 * use the bte to transfer the bulk of the
		 * data.
		 */
		headBteSource = src & ~L1_CACHE_MASK;
		headBcopyDest = dest;
		if (headBcopySrcOffset) {
			headBcopyLen =
			    (len >
			     (L1_CACHE_BYTES -
			      headBcopySrcOffset) ? L1_CACHE_BYTES
			     - headBcopySrcOffset : len);
			headBteLen = L1_CACHE_BYTES;
		} else {
			headBcopyLen = 0;
			headBteLen = 0;
		}

		if (len > headBcopyLen) {
			footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
			footBteLen = L1_CACHE_BYTES;

			footBteSource = src + len - footBcopyLen;
			footBcopyDest = dest + len - footBcopyLen;

			if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
				/*
				 * We have two contigous bcopy
				 * blocks.  Merge them.
				 */
				headBcopyLen += footBcopyLen;
				headBteLen += footBteLen;
			} else if (footBcopyLen > 0) {
				rv = bte_copy(footBteSource,
					      ia64_tpa((unsigned long)bteBlock),
					      footBteLen, mode, NULL);
				if (rv != BTE_SUCCESS) {
					kfree(bteBlock_unaligned);
					return rv;
				}

				memcpy(__va(footBcopyDest),
				       (char *)bteBlock, footBcopyLen);
			}
		} else {
			footBcopyLen = 0;
			footBteLen = 0;
		}

		if (len > (headBcopyLen + footBcopyLen)) {
			/* now transfer the middle. */
			rv = bte_copy((src + headBcopyLen),
				      (dest +
				       headBcopyLen),
				      (len - headBcopyLen -
				       footBcopyLen), mode, NULL);
			if (rv != BTE_SUCCESS) {
				kfree(bteBlock_unaligned);
				return rv;
			}

		}
	} else {

		/*
		 * The transfer is not symetric, we will
		 * allocate a buffer large enough for all the
		 * data, bte_copy into that buffer and then
		 * bcopy to the destination.
		 */

		/* Add the leader from source */
		headBteLen = len + (src & L1_CACHE_MASK);
		/* Add the trailing bytes from footer. */
		headBteLen += L1_CACHE_BYTES - (headBteLen & L1_CACHE_MASK);
		headBteSource = src & ~L1_CACHE_MASK;
		headBcopySrcOffset = src & L1_CACHE_MASK;
		headBcopyDest = dest;
		headBcopyLen = len;
	}

	if (headBcopyLen > 0) {
		rv = bte_copy(headBteSource,
			      ia64_tpa((unsigned long)bteBlock), headBteLen,
			      mode, NULL);
		if (rv != BTE_SUCCESS) {
			kfree(bteBlock_unaligned);
			return rv;
		}

		memcpy(__va(headBcopyDest), ((char *)bteBlock +
					     headBcopySrcOffset), headBcopyLen);
	}
	kfree(bteBlock_unaligned);
	return BTE_SUCCESS;
}

EXPORT_SYMBOL(bte_unaligned_copy);

/************************************************************************
 * Block Transfer Engine initialization functions.
 *
 ***********************************************************************/

/*
 * bte_init_node(nodepda, cnode)
 *
 * Initialize the nodepda structure with BTE base addresses and
 * spinlocks.
 */
void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
{
	int i;

	/*
	 * Indicate that all the block transfer engines on this node
	 * are available.
	 */

	/*
	 * Allocate one bte_recover_t structure per node.  It holds
	 * the recovery lock for node.  All the bte interface structures
	 * will point at this one bte_recover structure to get the lock.
	 */
	spin_lock_init(&mynodepda->bte_recovery_lock);
	init_timer(&mynodepda->bte_recovery_timer);
	mynodepda->bte_recovery_timer.function = bte_error_handler;
	mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;

	for (i = 0; i < BTES_PER_NODE; i++) {
		u64 *base_addr;

		/* Which link status register should we use? */
		base_addr = (u64 *)
		    REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
		mynodepda->bte_if[i].bte_base_addr = base_addr;
		mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
		mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
		mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
		mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);

		/*
		 * Initialize the notification and spinlock
		 * so the first transfer can occur.
		 */
		mynodepda->bte_if[i].most_rcnt_na =
		    &(mynodepda->bte_if[i].notify);
		mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
		spin_lock_init(&mynodepda->bte_if[i].spinlock);

		mynodepda->bte_if[i].bte_cnode = cnode;
		mynodepda->bte_if[i].bte_error_count = 0;
		mynodepda->bte_if[i].bte_num = i;
		mynodepda->bte_if[i].cleanup_active = 0;
		mynodepda->bte_if[i].bh_error = 0;
	}

}