summaryrefslogtreecommitdiff
path: root/arch/ia64/include/asm/sn/shubio.h
blob: 6052422a22b32e71fa1137b41c13dcffc145efd6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
 */

#ifndef _ASM_IA64_SN_SHUBIO_H
#define _ASM_IA64_SN_SHUBIO_H

#define HUB_WIDGET_ID_MAX	0xf
#define IIO_NUM_ITTES		7
#define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)

#define		IIO_WID			0x00400000	/* Crosstalk Widget Identification */
							/* This register is also accessible from
							 * Crosstalk at address 0x0.  */
#define		IIO_WSTAT		0x00400008	/* Crosstalk Widget Status */
#define		IIO_WCR			0x00400020	/* Crosstalk Widget Control Register */
#define		IIO_ILAPR		0x00400100	/* IO Local Access Protection Register */
#define		IIO_ILAPO		0x00400108	/* IO Local Access Protection Override */
#define		IIO_IOWA		0x00400110	/* IO Outbound Widget Access */
#define		IIO_IIWA		0x00400118	/* IO Inbound Widget Access */
#define		IIO_IIDEM		0x00400120	/* IO Inbound Device Error Mask */
#define		IIO_ILCSR		0x00400128	/* IO LLP Control and Status Register */
#define		IIO_ILLR		0x00400130	/* IO LLP Log Register    */
#define		IIO_IIDSR		0x00400138	/* IO Interrupt Destination */

#define		IIO_IGFX0		0x00400140	/* IO Graphics Node-Widget Map 0 */
#define		IIO_IGFX1		0x00400148	/* IO Graphics Node-Widget Map 1 */

#define		IIO_ISCR0		0x00400150	/* IO Scratch Register 0 */
#define		IIO_ISCR1		0x00400158	/* IO Scratch Register 1 */

#define		IIO_ITTE1		0x00400160	/* IO Translation Table Entry 1 */
#define		IIO_ITTE2		0x00400168	/* IO Translation Table Entry 2 */
#define		IIO_ITTE3		0x00400170	/* IO Translation Table Entry 3 */
#define		IIO_ITTE4		0x00400178	/* IO Translation Table Entry 4 */
#define		IIO_ITTE5		0x00400180	/* IO Translation Table Entry 5 */
#define		IIO_ITTE6		0x00400188	/* IO Translation Table Entry 6 */
#define		IIO_ITTE7		0x00400190	/* IO Translation Table Entry 7 */

#define		IIO_IPRB0		0x00400198	/* IO PRB Entry 0   */
#define		IIO_IPRB8		0x004001A0	/* IO PRB Entry 8   */
#define		IIO_IPRB9		0x004001A8	/* IO PRB Entry 9   */
#define		IIO_IPRBA		0x004001B0	/* IO PRB Entry A   */
#define		IIO_IPRBB		0x004001B8	/* IO PRB Entry B   */
#define		IIO_IPRBC		0x004001C0	/* IO PRB Entry C   */
#define		IIO_IPRBD		0x004001C8	/* IO PRB Entry D   */
#define		IIO_IPRBE		0x004001D0	/* IO PRB Entry E   */
#define		IIO_IPRBF		0x004001D8	/* IO PRB Entry F   */

#define		IIO_IXCC		0x004001E0	/* IO Crosstalk Credit Count Timeout */
#define		IIO_IMEM		0x004001E8	/* IO Miscellaneous Error Mask */
#define		IIO_IXTT		0x004001F0	/* IO Crosstalk Timeout Threshold */
#define		IIO_IECLR		0x004001F8	/* IO Error Clear Register */
#define		IIO_IBCR		0x00400200	/* IO BTE Control Register */

#define		IIO_IXSM		0x00400208	/* IO Crosstalk Spurious Message */
#define		IIO_IXSS		0x00400210	/* IO Crosstalk Spurious Sideband */

#define		IIO_ILCT		0x00400218	/* IO LLP Channel Test    */

#define		IIO_IIEPH1 		0x00400220	/* IO Incoming Error Packet Header, Part 1 */
#define		IIO_IIEPH2 		0x00400228	/* IO Incoming Error Packet Header, Part 2 */

#define		IIO_ISLAPR 		0x00400230	/* IO SXB Local Access Protection Regster */
#define		IIO_ISLAPO 		0x00400238	/* IO SXB Local Access Protection Override */

#define		IIO_IWI			0x00400240	/* IO Wrapper Interrupt Register */
#define		IIO_IWEL		0x00400248	/* IO Wrapper Error Log Register */
#define		IIO_IWC			0x00400250	/* IO Wrapper Control Register */
#define		IIO_IWS			0x00400258	/* IO Wrapper Status Register */
#define		IIO_IWEIM		0x00400260	/* IO Wrapper Error Interrupt Masking Register */

#define		IIO_IPCA		0x00400300	/* IO PRB Counter Adjust */

#define		IIO_IPRTE0_A		0x00400308	/* IO PIO Read Address Table Entry 0, Part A */
#define		IIO_IPRTE1_A		0x00400310	/* IO PIO Read Address Table Entry 1, Part A */
#define		IIO_IPRTE2_A		0x00400318	/* IO PIO Read Address Table Entry 2, Part A */
#define		IIO_IPRTE3_A		0x00400320	/* IO PIO Read Address Table Entry 3, Part A */
#define		IIO_IPRTE4_A		0x00400328	/* IO PIO Read Address Table Entry 4, Part A */
#define		IIO_IPRTE5_A		0x00400330	/* IO PIO Read Address Table Entry 5, Part A */
#define		IIO_IPRTE6_A		0x00400338	/* IO PIO Read Address Table Entry 6, Part A */
#define		IIO_IPRTE7_A		0x00400340	/* IO PIO Read Address Table Entry 7, Part A */

#define		IIO_IPRTE0_B		0x00400348	/* IO PIO Read Address Table Entry 0, Part B */
#define		IIO_IPRTE1_B		0x00400350	/* IO PIO Read Address Table Entry 1, Part B */
#define		IIO_IPRTE2_B		0x00400358	/* IO PIO Read Address Table Entry 2, Part B */
#define		IIO_IPRTE3_B		0x00400360	/* IO PIO Read Address Table Entry 3, Part B */
#define		IIO_IPRTE4_B		0x00400368	/* IO PIO Read Address Table Entry 4, Part B */
#define		IIO_IPRTE5_B		0x00400370	/* IO PIO Read Address Table Entry 5, Part B */
#define		IIO_IPRTE6_B		0x00400378	/* IO PIO Read Address Table Entry 6, Part B */
#define		IIO_IPRTE7_B		0x00400380	/* IO PIO Read Address Table Entry 7, Part B */

#define		IIO_IPDR		0x00400388	/* IO PIO Deallocation Register */
#define		IIO_ICDR		0x00400390	/* IO CRB Entry Deallocation Register */
#define		IIO_IFDR		0x00400398	/* IO IOQ FIFO Depth Register */
#define		IIO_IIAP		0x004003A0	/* IO IIQ Arbitration Parameters */
#define		IIO_ICMR		0x004003A8	/* IO CRB Management Register */
#define		IIO_ICCR		0x004003B0	/* IO CRB Control Register */
#define		IIO_ICTO		0x004003B8	/* IO CRB Timeout   */
#define		IIO_ICTP		0x004003C0	/* IO CRB Timeout Prescalar */

#define		IIO_ICRB0_A		0x00400400	/* IO CRB Entry 0_A */
#define		IIO_ICRB0_B		0x00400408	/* IO CRB Entry 0_B */
#define		IIO_ICRB0_C		0x00400410	/* IO CRB Entry 0_C */
#define		IIO_ICRB0_D		0x00400418	/* IO CRB Entry 0_D */
#define		IIO_ICRB0_E		0x00400420	/* IO CRB Entry 0_E */

#define		IIO_ICRB1_A		0x00400430	/* IO CRB Entry 1_A */
#define		IIO_ICRB1_B		0x00400438	/* IO CRB Entry 1_B */
#define		IIO_ICRB1_C		0x00400440	/* IO CRB Entry 1_C */
#define		IIO_ICRB1_D		0x00400448	/* IO CRB Entry 1_D */
#define		IIO_ICRB1_E		0x00400450	/* IO CRB Entry 1_E */

#define		IIO_ICRB2_A		0x00400460	/* IO CRB Entry 2_A */
#define		IIO_ICRB2_B		0x00400468	/* IO CRB Entry 2_B */
#define		IIO_ICRB2_C		0x00400470	/* IO CRB Entry 2_C */
#define		IIO_ICRB2_D		0x00400478	/* IO CRB Entry 2_D */
#define		IIO_ICRB2_E		0x00400480	/* IO CRB Entry 2_E */

#define		IIO_ICRB3_A		0x00400490	/* IO CRB Entry 3_A */
#define		IIO_ICRB3_B		0x00400498	/* IO CRB Entry 3_B */
#define		IIO_ICRB3_C		0x004004a0	/* IO CRB Entry 3_C */
#define		IIO_ICRB3_D		0x004004a8	/* IO CRB Entry 3_D */
#define		IIO_ICRB3_E		0x004004b0	/* IO CRB Entry 3_E */

#define		IIO_ICRB4_A		0x004004c0	/* IO CRB Entry 4_A */
#define		IIO_ICRB4_B		0x004004c8	/* IO CRB Entry 4_B */
#define		IIO_ICRB4_C		0x004004d0	/* IO CRB Entry 4_C */
#define		IIO_ICRB4_D		0x004004d8	/* IO CRB Entry 4_D */
#define		IIO_ICRB4_E		0x004004e0	/* IO CRB Entry 4_E */

#define		IIO_ICRB5_A		0x004004f0	/* IO CRB Entry 5_A */
#define		IIO_ICRB5_B		0x004004f8	/* IO CRB Entry 5_B */
#define		IIO_ICRB5_C		0x00400500	/* IO CRB Entry 5_C */
#define		IIO_ICRB5_D		0x00400508	/* IO CRB Entry 5_D */
#define		IIO_ICRB5_E		0x00400510	/* IO CRB Entry 5_E */

#define		IIO_ICRB6_A		0x00400520	/* IO CRB Entry 6_A */
#define		IIO_ICRB6_B		0x00400528	/* IO CRB Entry 6_B */
#define		IIO_ICRB6_C		0x00400530	/* IO CRB Entry 6_C */
#define		IIO_ICRB6_D		0x00400538	/* IO CRB Entry 6_D */
#define		IIO_ICRB6_E		0x00400540	/* IO CRB Entry 6_E */

#define		IIO_ICRB7_A		0x00400550	/* IO CRB Entry 7_A */
#define		IIO_ICRB7_B		0x00400558	/* IO CRB Entry 7_B */
#define		IIO_ICRB7_C		0x00400560	/* IO CRB Entry 7_C */
#define		IIO_ICRB7_D		0x00400568	/* IO CRB Entry 7_D */
#define		IIO_ICRB7_E		0x00400570	/* IO CRB Entry 7_E */

#define		IIO_ICRB8_A		0x00400580	/* IO CRB Entry 8_A */
#define		IIO_ICRB8_B		0x00400588	/* IO CRB Entry 8_B */
#define		IIO_ICRB8_C		0x00400590	/* IO CRB Entry 8_C */
#define		IIO_ICRB8_D		0x00400598	/* IO CRB Entry 8_D */
#define		IIO_ICRB8_E		0x004005a0	/* IO CRB Entry 8_E */

#define		IIO_ICRB9_A		0x004005b0	/* IO CRB Entry 9_A */
#define		IIO_ICRB9_B		0x004005b8	/* IO CRB Entry 9_B */
#define		IIO_ICRB9_C		0x004005c0	/* IO CRB Entry 9_C */
#define		IIO_ICRB9_D		0x004005c8	/* IO CRB Entry 9_D */
#define		IIO_ICRB9_E		0x004005d0	/* IO CRB Entry 9_E */

#define		IIO_ICRBA_A		0x004005e0	/* IO CRB Entry A_A */
#define		IIO_ICRBA_B		0x004005e8	/* IO CRB Entry A_B */
#define		IIO_ICRBA_C		0x004005f0	/* IO CRB Entry A_C */
#define		IIO_ICRBA_D		0x004005f8	/* IO CRB Entry A_D */
#define		IIO_ICRBA_E		0x00400600	/* IO CRB Entry A_E */

#define		IIO_ICRBB_A		0x00400610	/* IO CRB Entry B_A */
#define		IIO_ICRBB_B		0x00400618	/* IO CRB Entry B_B */
#define		IIO_ICRBB_C		0x00400620	/* IO CRB Entry B_C */
#define		IIO_ICRBB_D		0x00400628	/* IO CRB Entry B_D */
#define		IIO_ICRBB_E		0x00400630	/* IO CRB Entry B_E */

#define		IIO_ICRBC_A		0x00400640	/* IO CRB Entry C_A */
#define		IIO_ICRBC_B		0x00400648	/* IO CRB Entry C_B */
#define		IIO_ICRBC_C		0x00400650	/* IO CRB Entry C_C */
#define		IIO_ICRBC_D		0x00400658	/* IO CRB Entry C_D */
#define		IIO_ICRBC_E		0x00400660	/* IO CRB Entry C_E */

#define		IIO_ICRBD_A		0x00400670	/* IO CRB Entry D_A */
#define		IIO_ICRBD_B		0x00400678	/* IO CRB Entry D_B */
#define		IIO_ICRBD_C		0x00400680	/* IO CRB Entry D_C */
#define		IIO_ICRBD_D		0x00400688	/* IO CRB Entry D_D */
#define		IIO_ICRBD_E		0x00400690	/* IO CRB Entry D_E */

#define		IIO_ICRBE_A		0x004006a0	/* IO CRB Entry E_A */
#define		IIO_ICRBE_B		0x004006a8	/* IO CRB Entry E_B */
#define		IIO_ICRBE_C		0x004006b0	/* IO CRB Entry E_C */
#define		IIO_ICRBE_D		0x004006b8	/* IO CRB Entry E_D */
#define		IIO_ICRBE_E		0x004006c0	/* IO CRB Entry E_E */

#define		IIO_ICSML		0x00400700	/* IO CRB Spurious Message Low */
#define		IIO_ICSMM		0x00400708	/* IO CRB Spurious Message Middle */
#define		IIO_ICSMH		0x00400710	/* IO CRB Spurious Message High */

#define		IIO_IDBSS		0x00400718	/* IO Debug Submenu Select */

#define		IIO_IBLS0		0x00410000	/* IO BTE Length Status 0 */
#define		IIO_IBSA0		0x00410008	/* IO BTE Source Address 0 */
#define		IIO_IBDA0		0x00410010	/* IO BTE Destination Address 0 */
#define		IIO_IBCT0		0x00410018	/* IO BTE Control Terminate 0 */
#define		IIO_IBNA0		0x00410020	/* IO BTE Notification Address 0 */
#define		IIO_IBIA0		0x00410028	/* IO BTE Interrupt Address 0 */
#define		IIO_IBLS1		0x00420000	/* IO BTE Length Status 1 */
#define		IIO_IBSA1		0x00420008	/* IO BTE Source Address 1 */
#define		IIO_IBDA1		0x00420010	/* IO BTE Destination Address 1 */
#define		IIO_IBCT1		0x00420018	/* IO BTE Control Terminate 1 */
#define		IIO_IBNA1		0x00420020	/* IO BTE Notification Address 1 */
#define		IIO_IBIA1		0x00420028	/* IO BTE Interrupt Address 1 */

#define		IIO_IPCR		0x00430000	/* IO Performance Control */
#define		IIO_IPPR		0x00430008	/* IO Performance Profiling */

/************************************************************************
 *									*
 * Description:  This register echoes some information from the         *
 * LB_REV_ID register. It is available through Crosstalk as described   *
 * above. The REV_NUM and MFG_NUM fields receive their values from      *
 * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
 * The PART_NUM field's value is the Crosstalk device ID number that    *
 * Steve Miller assigned to the SHub chip.                              *
 *									*
 ************************************************************************/

typedef union ii_wid_u {
	u64 ii_wid_regval;
	struct {
		u64 w_rsvd_1:1;
		u64 w_mfg_num:11;
		u64 w_part_num:16;
		u64 w_rev_num:4;
		u64 w_rsvd:32;
	} ii_wid_fld_s;
} ii_wid_u_t;

/************************************************************************
 *									*
 *  The fields in this register are set upon detection of an error      *
 * and cleared by various mechanisms, as explained in the               *
 * description.                                                         *
 *									*
 ************************************************************************/

typedef union ii_wstat_u {
	u64 ii_wstat_regval;
	struct {
		u64 w_pending:4;
		u64 w_xt_crd_to:1;
		u64 w_xt_tail_to:1;
		u64 w_rsvd_3:3;
		u64 w_tx_mx_rty:1;
		u64 w_rsvd_2:6;
		u64 w_llp_tx_cnt:8;
		u64 w_rsvd_1:8;
		u64 w_crazy:1;
		u64 w_rsvd:31;
	} ii_wstat_fld_s;
} ii_wstat_u_t;

/************************************************************************
 *									*
 * Description:  This is a read-write enabled register. It controls     *
 * various aspects of the Crosstalk flow control.                       *
 *									*
 ************************************************************************/

typedef union ii_wcr_u {
	u64 ii_wcr_regval;
	struct {
		u64 w_wid:4;
		u64 w_tag:1;
		u64 w_rsvd_1:8;
		u64 w_dst_crd:3;
		u64 w_f_bad_pkt:1;
		u64 w_dir_con:1;
		u64 w_e_thresh:5;
		u64 w_rsvd:41;
	} ii_wcr_fld_s;
} ii_wcr_u_t;

/************************************************************************
 *									*
 * Description:  This register's value is a bit vector that guards      *
 * access to local registers within the II as well as to external       *
 * Crosstalk widgets. Each bit in the register corresponds to a         *
 * particular region in the system; a region consists of one, two or    *
 * four nodes (depending on the value of the REGION_SIZE field in the   *
 * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
 * protection provided by this register applies to PIO read             *
 * operations as well as PIO write operations. The II will perform a    *
 * PIO read or write request only if the bit for the requestor's        *
 * region is set; otherwise, the II will not perform the requested      *
 * operation and will return an error response. When a PIO read or      *
 * write request targets an external Crosstalk widget, then not only    *
 * must the bit for the requestor's region be set in the ILAPR, but     *
 * also the target widget's bit in the IOWA register must be set in     *
 * order for the II to perform the requested operation; otherwise,      *
 * the II will return an error response. Hence, the protection          *
 * provided by the IOWA register supplements the protection provided    *
 * by the ILAPR for requests that target external Crosstalk widgets.    *
 * This register itself can be accessed only by the nodes whose         *
 * region ID bits are enabled in this same register. It can also be     *
 * accessed through the IAlias space by the local processors.           *
 * The reset value of this register allows access by all nodes.         *
 *									*
 ************************************************************************/

typedef union ii_ilapr_u {
	u64 ii_ilapr_regval;
	struct {
		u64 i_region:64;
	} ii_ilapr_fld_s;
} ii_ilapr_u_t;

/************************************************************************
 *									*
 * Description:  A write to this register of the 64-bit value           *
 * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
 * corresponding to the region of the requestor to be set (allow        *
 * access). A write of any other value will be ignored. Access          *
 * protection for this register is "SGIrules".                          *
 * This register can also be accessed through the IAlias space.         *
 * However, this access will not change the access permissions in the   *
 * ILAPR.                                                               *
 *									*
 ************************************************************************/

typedef union ii_ilapo_u {
	u64 ii_ilapo_regval;
	struct {
		u64 i_io_ovrride:64;
	} ii_ilapo_fld_s;
} ii_ilapo_u_t;

/************************************************************************
 *									*
 *  This register qualifies all the PIO and Graphics writes launched    *
 * from the SHUB towards a widget.                                      *
 *									*
 ************************************************************************/

typedef union ii_iowa_u {
	u64 ii_iowa_regval;
	struct {
		u64 i_w0_oac:1;
		u64 i_rsvd_1:7;
		u64 i_wx_oac:8;
		u64 i_rsvd:48;
	} ii_iowa_fld_s;
} ii_iowa_u_t;

/************************************************************************
 *									*
 * Description:  This register qualifies all the requests launched      *
 * from a widget towards the Shub. This register is intended to be      *
 * used by software in case of misbehaving widgets.                     *
 *									*
 *									*
 ************************************************************************/

typedef union ii_iiwa_u {
	u64 ii_iiwa_regval;
	struct {
		u64 i_w0_iac:1;
		u64 i_rsvd_1:7;
		u64 i_wx_iac:8;
		u64 i_rsvd:48;
	} ii_iiwa_fld_s;
} ii_iiwa_u_t;

/************************************************************************
 *									*
 * Description:  This register qualifies all the operations launched    *
 * from a widget towards the SHub. It allows individual access          *
 * control for up to 8 devices per widget. A device refers to           *
 * individual DMA master hosted by a widget.                            *
 * The bits in each field of this register are cleared by the Shub      *
 * upon detection of an error which requires the device to be           *
 * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
 * Crosstalk). Whether or not a device has access rights to this        *
 * Shub is determined by an AND of the device enable bit in the         *
 * appropriate field of this register and the corresponding bit in      *
 * the Wx_IAC field (for the widget which this device belongs to).      *
 * The bits in this field are set by writing a 1 to them. Incoming      *
 * replies from Crosstalk are not subject to this access control        *
 * mechanism.                                                           *
 *									*
 ************************************************************************/

typedef union ii_iidem_u {
	u64 ii_iidem_regval;
	struct {
		u64 i_w8_dxs:8;
		u64 i_w9_dxs:8;
		u64 i_wa_dxs:8;
		u64 i_wb_dxs:8;
		u64 i_wc_dxs:8;
		u64 i_wd_dxs:8;
		u64 i_we_dxs:8;
		u64 i_wf_dxs:8;
	} ii_iidem_fld_s;
} ii_iidem_u_t;

/************************************************************************
 *									*
 *  This register contains the various programmable fields necessary    *
 * for controlling and observing the LLP signals.                       *
 *									*
 ************************************************************************/

typedef union ii_ilcsr_u {
	u64 ii_ilcsr_regval;
	struct {
		u64 i_nullto:6;
		u64 i_rsvd_4:2;
		u64 i_wrmrst:1;
		u64 i_rsvd_3:1;
		u64 i_llp_en:1;
		u64 i_bm8:1;
		u64 i_llp_stat:2;
		u64 i_remote_power:1;
		u64 i_rsvd_2:1;
		u64 i_maxrtry:10;
		u64 i_d_avail_sel:2;
		u64 i_rsvd_1:4;
		u64 i_maxbrst:10;
		u64 i_rsvd:22;

	} ii_ilcsr_fld_s;
} ii_ilcsr_u_t;

/************************************************************************
 *									*
 *  This is simply a status registers that monitors the LLP error       *
 * rate.								*
 *									*
 ************************************************************************/

typedef union ii_illr_u {
	u64 ii_illr_regval;
	struct {
		u64 i_sn_cnt:16;
		u64 i_cb_cnt:16;
		u64 i_rsvd:32;
	} ii_illr_fld_s;
} ii_illr_u_t;

/************************************************************************
 *									*
 * Description:  All II-detected non-BTE error interrupts are           *
 * specified via this register.                                         *
 * NOTE: The PI interrupt register address is hardcoded in the II. If   *
 * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
 * packet) to address offset 0x0180_0090 within the local register      *
 * address space of PI0 on the node specified by the NODE field. If     *
 * PI_ID==1, then the II sends the interrupt request to address         *
 * offset 0x01A0_0090 within the local register address space of PI1    *
 * on the node specified by the NODE field.                             *
 *									*
 ************************************************************************/

typedef union ii_iidsr_u {
	u64 ii_iidsr_regval;
	struct {
		u64 i_level:8;
		u64 i_pi_id:1;
		u64 i_node:11;
		u64 i_rsvd_3:4;
		u64 i_enable:1;
		u64 i_rsvd_2:3;
		u64 i_int_sent:2;
		u64 i_rsvd_1:2;
		u64 i_pi0_forward_int:1;
		u64 i_pi1_forward_int:1;
		u64 i_rsvd:30;
	} ii_iidsr_fld_s;
} ii_iidsr_u_t;

/************************************************************************
 *									*
 *  There are two instances of this register. This register is used     *
 * for matching up the incoming responses from the graphics widget to   *
 * the processor that initiated the graphics operation. The             *
 * write-responses are converted to graphics credits and returned to    *
 * the processor so that the processor interface can manage the flow    *
 * control.                                                             *
 *									*
 ************************************************************************/

typedef union ii_igfx0_u {
	u64 ii_igfx0_regval;
	struct {
		u64 i_w_num:4;
		u64 i_pi_id:1;
		u64 i_n_num:12;
		u64 i_p_num:1;
		u64 i_rsvd:46;
	} ii_igfx0_fld_s;
} ii_igfx0_u_t;

/************************************************************************
 *									*
 *  There are two instances of this register. This register is used     *
 * for matching up the incoming responses from the graphics widget to   *
 * the processor that initiated the graphics operation. The             *
 * write-responses are converted to graphics credits and returned to    *
 * the processor so that the processor interface can manage the flow    *
 * control.                                                             *
 *									*
 ************************************************************************/

typedef union ii_igfx1_u {
	u64 ii_igfx1_regval;
	struct {
		u64 i_w_num:4;
		u64 i_pi_id:1;
		u64 i_n_num:12;
		u64 i_p_num:1;
		u64 i_rsvd:46;
	} ii_igfx1_fld_s;
} ii_igfx1_u_t;

/************************************************************************
 *									*
 *  There are two instances of this registers. These registers are      *
 * used as scratch registers for software use.                          *
 *									*
 ************************************************************************/

typedef union ii_iscr0_u {
	u64 ii_iscr0_regval;
	struct {
		u64 i_scratch:64;
	} ii_iscr0_fld_s;
} ii_iscr0_u_t;

/************************************************************************
 *									*
 *  There are two instances of this registers. These registers are      *
 * used as scratch registers for software use.                          *
 *									*
 ************************************************************************/

typedef union ii_iscr1_u {
	u64 ii_iscr1_regval;
	struct {
		u64 i_scratch:64;
	} ii_iscr1_fld_s;
} ii_iscr1_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the SHub is thus the lower 16 GBytes per widget       * 
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte1_u {
	u64 ii_itte1_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte1_fld_s;
} ii_itte1_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte2_u {
	u64 ii_itte2_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte2_fld_s;
} ii_itte2_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the SHub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte3_u {
	u64 ii_itte3_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte3_fld_s;
} ii_itte3_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a SHub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the SHub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the SHub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte4_u {
	u64 ii_itte4_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte4_fld_s;
} ii_itte4_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a SHub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte5_u {
	u64 ii_itte5_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte5_fld_s;
} ii_itte5_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte6_u {
	u64 ii_itte6_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte6_fld_s;
} ii_itte6_u_t;

/************************************************************************
 *									*
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the SHub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *									*
 ************************************************************************/

typedef union ii_itte7_u {
	u64 ii_itte7_regval;
	struct {
		u64 i_offset:5;
		u64 i_rsvd_1:3;
		u64 i_w_num:4;
		u64 i_iosp:1;
		u64 i_rsvd:51;
	} ii_itte7_fld_s;
} ii_itte7_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprb0_u {
	u64 ii_iprb0_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprb0_fld_s;
} ii_iprb0_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprb8_u {
	u64 ii_iprb8_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprb8_fld_s;
} ii_iprb8_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprb9_u {
	u64 ii_iprb9_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprb9_fld_s;
} ii_iprb9_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.        *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 *									*
 *									*
 ************************************************************************/

typedef union ii_iprba_u {
	u64 ii_iprba_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprba_fld_s;
} ii_iprba_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprbb_u {
	u64 ii_iprbb_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprbb_fld_s;
} ii_iprbb_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprbc_u {
	u64 ii_iprbc_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprbc_fld_s;
} ii_iprbc_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprbd_u {
	u64 ii_iprbd_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprbd_fld_s;
} ii_iprbd_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprbe_u {
	u64 ii_iprbe_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprbe_fld_s;
} ii_iprbe_u_t;

/************************************************************************
 *									*
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of Shub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .    								*
 *									*
 ************************************************************************/

typedef union ii_iprbf_u {
	u64 ii_iprbf_regval;
	struct {
		u64 i_c:8;
		u64 i_na:14;
		u64 i_rsvd_2:2;
		u64 i_nb:14;
		u64 i_rsvd_1:2;
		u64 i_m:2;
		u64 i_f:1;
		u64 i_of_cnt:5;
		u64 i_error:1;
		u64 i_rd_to:1;
		u64 i_spur_wr:1;
		u64 i_spur_rd:1;
		u64 i_rsvd:11;
		u64 i_mult_err:1;
	} ii_iprbe_fld_s;
} ii_iprbf_u_t;

/************************************************************************
 *									*
 *  This register specifies the timeout value to use for monitoring     *
 * Crosstalk credits which are used outbound to Crosstalk. An           *
 * internal counter called the Crosstalk Credit Timeout Counter         *
 * increments every 128 II clocks. The counter starts counting          *
 * anytime the credit count drops below a threshold, and resets to      *
 * zero (stops counting) anytime the credit count is at or above the    *
 * threshold. The threshold is 1 credit in direct connect mode and 2    *
 * in Crossbow connect mode. When the internal Crosstalk Credit         *
 * Timeout Counter reaches the value programmed in this register, a     *
 * Crosstalk Credit Timeout has occurred. The internal counter is not   *
 * readable from software, and stops counting at its maximum value,     *
 * so it cannot cause more than one interrupt.                          *
 *									*
 ************************************************************************/

typedef union ii_ixcc_u {
	u64 ii_ixcc_regval;
	struct {
		u64 i_time_out:26;
		u64 i_rsvd:38;
	} ii_ixcc_fld_s;
} ii_ixcc_u_t;

/************************************************************************
 *									*
 * Description:  This register qualifies all the PIO and DMA            *
 * operations launched from widget 0 towards the SHub. In               *
 * addition, it also qualifies accesses by the BTE streams.             *
 * The bits in each field of this register are cleared by the SHub      *
 * upon detection of an error which requires widget 0 or the BTE        *
 * streams to be terminated. Whether or not widget x has access         *
 * rights to this SHub is determined by an AND of the device            *
 * enable bit in the appropriate field of this register and bit 0 in    *
 * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
 * them. Incoming replies from Crosstalk are not subject to this        *
 * access control mechanism.                                            *
 *									*
 ************************************************************************/

typedef union ii_imem_u {
	u64 ii_imem_regval;
	struct {
		u64 i_w0_esd:1;
		u64 i_rsvd_3:3;
		u64 i_b0_esd:1;
		u64 i_rsvd_2:3;
		u64 i_b1_esd:1;
		u64 i_rsvd_1:3;
		u64 i_clr_precise:1;
		u64 i_rsvd:51;
	} ii_imem_fld_s;
} ii_imem_u_t;

/************************************************************************
 *									*
 * Description:  This register specifies the timeout value to use for   *
 * monitoring Crosstalk tail flits coming into the Shub in the          *
 * TAIL_TO field. An internal counter associated with this register     *
 * is incremented every 128 II internal clocks (7 bits). The counter    *
 * starts counting anytime a header micropacket is received and stops   *
 * counting (and resets to zero) any time a micropacket with a Tail     *
 * bit is received. Once the counter reaches the threshold value        *
 * programmed in this register, it generates an interrupt to the        *
 * processor that is programmed into the IIDSR. The counter saturates   *
 * (does not roll over) at its maximum value, so it cannot cause        *
 * another interrupt until after it is cleared.                         *
 * The register also contains the Read Response Timeout values. The     *
 * Prescalar is 23 bits, and counts II clocks. An internal counter      *
 * increments on every II clock and when it reaches the value in the    *
 * Prescalar field, all IPRTE registers with their valid bits set       *
 * have their Read Response timers bumped. Whenever any of them match   *
 * the value in the RRSP_TO field, a Read Response Timeout has          *
 * occurred, and error handling occurs as described in the Error        *
 * Handling section of this document.                                   *
 *									*
 ************************************************************************/

typedef union ii_ixtt_u {
	u64 ii_ixtt_regval;
	struct {
		u64 i_tail_to:26;
		u64 i_rsvd_1:6;
		u64 i_rrsp_ps:23;
		u64 i_rrsp_to:5;
		u64 i_rsvd:4;
	} ii_ixtt_fld_s;
} ii_ixtt_u_t;

/************************************************************************
 *									*
 *  Writing a 1 to the fields of this register clears the appropriate   *
 * error bits in other areas of SHub. Note that when the                *
 * E_PRB_x bits are used to clear error bits in PRB registers,          *
 * SPUR_RD and SPUR_WR may persist, because they require additional     *
 * action to clear them. See the IPRBx and IXSS Register                *
 * specifications.                                                      *
 *									*
 ************************************************************************/

typedef union ii_ieclr_u {
	u64 ii_ieclr_regval;
	struct {
		u64 i_e_prb_0:1;
		u64 i_rsvd:7;
		u64 i_e_prb_8:1;
		u64 i_e_prb_9:1;
		u64 i_e_prb_a:1;
		u64 i_e_prb_b:1;
		u64 i_e_prb_c:1;
		u64 i_e_prb_d:1;
		u64 i_e_prb_e:1;
		u64 i_e_prb_f:1;
		u64 i_e_crazy:1;
		u64 i_e_bte_0:1;
		u64 i_e_bte_1:1;
		u64 i_reserved_1:10;
		u64 i_spur_rd_hdr:1;
		u64 i_cam_intr_to:1;
		u64 i_cam_overflow:1;
		u64 i_cam_read_miss:1;
		u64 i_ioq_rep_underflow:1;
		u64 i_ioq_req_underflow:1;
		u64 i_ioq_rep_overflow:1;
		u64 i_ioq_req_overflow:1;
		u64 i_iiq_rep_overflow:1;
		u64 i_iiq_req_overflow:1;
		u64 i_ii_xn_rep_cred_overflow:1;
		u64 i_ii_xn_req_cred_overflow:1;
		u64 i_ii_xn_invalid_cmd:1;
		u64 i_xn_ii_invalid_cmd:1;
		u64 i_reserved_2:21;
	} ii_ieclr_fld_s;
} ii_ieclr_u_t;

/************************************************************************
 *									*
 *  This register controls both BTEs. SOFT_RESET is intended for        *
 * recovery after an error. COUNT controls the total number of CRBs     *
 * that both BTEs (combined) can use, which affects total BTE           *
 * bandwidth.                                                           *
 *									*
 ************************************************************************/

typedef union ii_ibcr_u {
	u64 ii_ibcr_regval;
	struct {
		u64 i_count:4;
		u64 i_rsvd_1:4;
		u64 i_soft_reset:1;
		u64 i_rsvd:55;
	} ii_ibcr_fld_s;
} ii_ibcr_u_t;

/************************************************************************
 *									*
 *  This register contains the header of a spurious read response       *
 * received from Crosstalk. A spurious read response is defined as a    *
 * read response received by II from a widget for which (1) the SIDN    *
 * has a value between 1 and 7, inclusive (II never sends requests to   *
 * these widgets (2) there is no valid IPRTE register which             *
 * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
 * not the same as the widget recorded in the IPRTE register            *
 * referenced by the TNUM. If this condition is true, and if the        *
 * IXSS[VALID] bit is clear, then the header of the spurious read       *
 * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
 * errant header is thereby captured, and no further spurious read      *
 * respones are captured until IXSS[VALID] is cleared by setting the    *
 * appropriate bit in IECLR.Everytime a spurious read response is       *
 * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
 * message's SIDN field is set. This always happens, regarless of       *
 * whether a header is captured. The programmer should check            *
 * IXSM[SIDN] to determine which widget sent the spurious response,     *
 * because there may be more than one SPUR_RD bit set in the PRB        *
 * registers. The widget indicated by IXSM[SIDN] was the first          *
 * spurious read response to be received since the last time            *
 * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
 * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
 * spurious messages from other widets which were detected after the    *
 * header was captured..                                                *
 *									*
 ************************************************************************/

typedef union ii_ixsm_u {
	u64 ii_ixsm_regval;
	struct {
		u64 i_byte_en:32;
		u64 i_reserved:1;
		u64 i_tag:3;
		u64 i_alt_pactyp:4;
		u64 i_bo:1;
		u64 i_error:1;
		u64 i_vbpm:1;
		u64 i_gbr:1;
		u64 i_ds:2;
		u64 i_ct:1;
		u64 i_tnum:5;
		u64 i_pactyp:4;
		u64 i_sidn:4;
		u64 i_didn:4;
	} ii_ixsm_fld_s;
} ii_ixsm_u_t;

/************************************************************************
 *									*
 *  This register contains the sideband bits of a spurious read         *
 * response received from Crosstalk.                                    *
 *									*
 ************************************************************************/

typedef union ii_ixss_u {
	u64 ii_ixss_regval;
	struct {
		u64 i_sideband:8;
		u64 i_rsvd:55;
		u64 i_valid:1;
	} ii_ixss_fld_s;
} ii_ixss_u_t;

/************************************************************************
 *									*
 *  This register enables software to access the II LLP's test port.    *
 * Refer to the LLP 2.5 documentation for an explanation of the test    *
 * port. Software can write to this register to program the values      *
 * for the control fields (TestErrCapture, TestClear, TestFlit,         *
 * TestMask and TestSeed). Similarly, software can read from this       *
 * register to obtain the values of the test port's status outputs      *
 * (TestCBerr, TestValid and TestData).                                 *
 *									*
 ************************************************************************/

typedef union ii_ilct_u {
	u64 ii_ilct_regval;
	struct {
		u64 i_test_seed:20;
		u64 i_test_mask:8;
		u64 i_test_data:20;
		u64 i_test_valid:1;
		u64 i_test_cberr:1;
		u64 i_test_flit:3;
		u64 i_test_clear:1;
		u64 i_test_err_capture:1;
		u64 i_rsvd:9;
	} ii_ilct_fld_s;
} ii_ilct_u_t;

/************************************************************************
 *									*
 *  If the II detects an illegal incoming Duplonet packet (request or   *
 * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
 * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
 * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
 * and assigns a value to the ERR_TYPE field which indicates the        *
 * specific nature of the error. The II recognizes four different       *
 * types of errors: short request packets (ERR_TYPE==2), short reply    *
 * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
 * reply packets (ERR_TYPE==5). The encodings for these types of        *
 * errors were chosen to be consistent with the same types of errors    *
 * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
 * the LB unit). If the II detects an illegal incoming Duplonet         *
 * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
 * the OVERRUN bit to indicate that a subsequent error has happened,    *
 * and does nothing further.                                            *
 *									*
 ************************************************************************/

typedef union ii_iieph1_u {
	u64 ii_iieph1_regval;
	struct {
		u64 i_command:7;
		u64 i_rsvd_5:1;
		u64 i_suppl:14;
		u64 i_rsvd_4:1;
		u64 i_source:14;
		u64 i_rsvd_3:1;
		u64 i_err_type:4;
		u64 i_rsvd_2:4;
		u64 i_overrun:1;
		u64 i_rsvd_1:3;
		u64 i_valid:1;
		u64 i_rsvd:13;
	} ii_iieph1_fld_s;
} ii_iieph1_u_t;

/************************************************************************
 *									*
 *  This register holds the Address field from the header flit of an    *
 * incoming erroneous Duplonet packet, along with the tail bit which    *
 * accompanied this header flit. This register is essentially an        *
 * extension of IIEPH1. Two registers were necessary because the 64     *
 * bits available in only a single register were insufficient to        *
 * capture the entire header flit of an erroneous packet.               *
 *									*
 ************************************************************************/

typedef union ii_iieph2_u {
	u64 ii_iieph2_regval;
	struct {
		u64 i_rsvd_0:3;
		u64 i_address:47;
		u64 i_rsvd_1:10;
		u64 i_tail:1;
		u64 i_rsvd:3;
	} ii_iieph2_fld_s;
} ii_iieph2_u_t;

/******************************/

/************************************************************************
 *									*
 *  This register's value is a bit vector that guards access from SXBs  *
 * to local registers within the II as well as to external Crosstalk    *
 * widgets								*
 *									*
 ************************************************************************/

typedef union ii_islapr_u {
	u64 ii_islapr_regval;
	struct {
		u64 i_region:64;
	} ii_islapr_fld_s;
} ii_islapr_u_t;

/************************************************************************
 *									*
 *  A write to this register of the 56-bit value "Pup+Bun" will cause	*
 * the bit in the ISLAPR register corresponding to the region of the	*
 * requestor to be set (access allowed).				(
 *									*
 ************************************************************************/

typedef union ii_islapo_u {
	u64 ii_islapo_regval;
	struct {
		u64 i_io_sbx_ovrride:56;
		u64 i_rsvd:8;
	} ii_islapo_fld_s;
} ii_islapo_u_t;

/************************************************************************
 *									*
 *  Determines how long the wrapper will wait aftr an interrupt is	*
 * initially issued from the II before it times out the outstanding	*
 * interrupt and drops it from the interrupt queue.			* 
 *									*
 ************************************************************************/

typedef union ii_iwi_u {
	u64 ii_iwi_regval;
	struct {
		u64 i_prescale:24;
		u64 i_rsvd:8;
		u64 i_timeout:8;
		u64 i_rsvd1:8;
		u64 i_intrpt_retry_period:8;
		u64 i_rsvd2:8;
	} ii_iwi_fld_s;
} ii_iwi_u_t;

/************************************************************************
 *									*
 *  Log errors which have occurred in the II wrapper. The errors are	*
 * cleared by writing to the IECLR register.				* 
 *									*
 ************************************************************************/

typedef union ii_iwel_u {
	u64 ii_iwel_regval;
	struct {
		u64 i_intr_timed_out:1;
		u64 i_rsvd:7;
		u64 i_cam_overflow:1;
		u64 i_cam_read_miss:1;
		u64 i_rsvd1:2;
		u64 i_ioq_rep_underflow:1;
		u64 i_ioq_req_underflow:1;
		u64 i_ioq_rep_overflow:1;
		u64 i_ioq_req_overflow:1;
		u64 i_iiq_rep_overflow:1;
		u64 i_iiq_req_overflow:1;
		u64 i_rsvd2:6;
		u64 i_ii_xn_rep_cred_over_under:1;
		u64 i_ii_xn_req_cred_over_under:1;
		u64 i_rsvd3:6;
		u64 i_ii_xn_invalid_cmd:1;
		u64 i_xn_ii_invalid_cmd:1;
		u64 i_rsvd4:30;
	} ii_iwel_fld_s;
} ii_iwel_u_t;

/************************************************************************
 *									*
 *  Controls the II wrapper.						* 
 *									*
 ************************************************************************/

typedef union ii_iwc_u {
	u64 ii_iwc_regval;
	struct {
		u64 i_dma_byte_swap:1;
		u64 i_rsvd:3;
		u64 i_cam_read_lines_reset:1;
		u64 i_rsvd1:3;
		u64 i_ii_xn_cred_over_under_log:1;
		u64 i_rsvd2:19;
		u64 i_xn_rep_iq_depth:5;
		u64 i_rsvd3:3;
		u64 i_xn_req_iq_depth:5;
		u64 i_rsvd4:3;
		u64 i_iiq_depth:6;
		u64 i_rsvd5:12;
		u64 i_force_rep_cred:1;
		u64 i_force_req_cred:1;
	} ii_iwc_fld_s;
} ii_iwc_u_t;

/************************************************************************
 *									*
 *  Status in the II wrapper.						* 
 *									*
 ************************************************************************/

typedef union ii_iws_u {
	u64 ii_iws_regval;
	struct {
		u64 i_xn_rep_iq_credits:5;
		u64 i_rsvd:3;
		u64 i_xn_req_iq_credits:5;
		u64 i_rsvd1:51;
	} ii_iws_fld_s;
} ii_iws_u_t;

/************************************************************************
 *									*
 *  Masks errors in the IWEL register.					*
 *									*
 ************************************************************************/

typedef union ii_iweim_u {
	u64 ii_iweim_regval;
	struct {
		u64 i_intr_timed_out:1;
		u64 i_rsvd:7;
		u64 i_cam_overflow:1;
		u64 i_cam_read_miss:1;
		u64 i_rsvd1:2;
		u64 i_ioq_rep_underflow:1;
		u64 i_ioq_req_underflow:1;
		u64 i_ioq_rep_overflow:1;
		u64 i_ioq_req_overflow:1;
		u64 i_iiq_rep_overflow:1;
		u64 i_iiq_req_overflow:1;
		u64 i_rsvd2:6;
		u64 i_ii_xn_rep_cred_overflow:1;
		u64 i_ii_xn_req_cred_overflow:1;
		u64 i_rsvd3:6;
		u64 i_ii_xn_invalid_cmd:1;
		u64 i_xn_ii_invalid_cmd:1;
		u64 i_rsvd4:30;
	} ii_iweim_fld_s;
} ii_iweim_u_t;

/************************************************************************
 *									*
 *  A write to this register causes a particular field in the           *
 * corresponding widget's PRB entry to be adjusted up or down by 1.     *
 * This counter should be used when recovering from error and reset     *
 * conditions. Note that software would be capable of causing           *
 * inadvertent overflow or underflow of these counters.                 *
 *									*
 ************************************************************************/

typedef union ii_ipca_u {
	u64 ii_ipca_regval;
	struct {
		u64 i_wid:4;
		u64 i_adjust:1;
		u64 i_rsvd_1:3;
		u64 i_field:2;
		u64 i_rsvd:54;
	} ii_ipca_fld_s;
} ii_ipca_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte0a_u {
	u64 ii_iprte0a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte0a_fld_s;
} ii_iprte0a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte1a_u {
	u64 ii_iprte1a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte1a_fld_s;
} ii_iprte1a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte2a_u {
	u64 ii_iprte2a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte2a_fld_s;
} ii_iprte2a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte3a_u {
	u64 ii_iprte3a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte3a_fld_s;
} ii_iprte3a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte4a_u {
	u64 ii_iprte4a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte4a_fld_s;
} ii_iprte4a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte5a_u {
	u64 ii_iprte5a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte5a_fld_s;
} ii_iprte5a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte6a_u {
	u64 ii_iprte6a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprte6a_fld_s;
} ii_iprte6a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte7a_u {
	u64 ii_iprte7a_regval;
	struct {
		u64 i_rsvd_1:54;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} ii_iprtea7_fld_s;
} ii_iprte7a_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte0b_u {
	u64 ii_iprte0b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte0b_fld_s;
} ii_iprte0b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte1b_u {
	u64 ii_iprte1b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte1b_fld_s;
} ii_iprte1b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte2b_u {
	u64 ii_iprte2b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte2b_fld_s;
} ii_iprte2b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte3b_u {
	u64 ii_iprte3b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte3b_fld_s;
} ii_iprte3b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte4b_u {
	u64 ii_iprte4b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte4b_fld_s;
} ii_iprte4b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte5b_u {
	u64 ii_iprte5b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte5b_fld_s;
} ii_iprte5b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte6b_u {
	u64 ii_iprte6b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;

	} ii_iprte6b_fld_s;
} ii_iprte6b_u_t;

/************************************************************************
 *									*
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *									*
 ************************************************************************/

typedef union ii_iprte7b_u {
	u64 ii_iprte7b_regval;
	struct {
		u64 i_rsvd_1:3;
		u64 i_address:47;
		u64 i_init:3;
		u64 i_source:11;
	} ii_iprte7b_fld_s;
} ii_iprte7b_u_t;

/************************************************************************
 *									*
 * Description:  SHub II contains a feature which did not exist in      *
 * the Hub which automatically cleans up after a Read Response          *
 * timeout, including deallocation of the IPRTE and recovery of IBuf    *
 * space. The inclusion of this register in SHub is for backward        *
 * compatibility                                                        *
 * A write to this register causes an entry from the table of           *
 * outstanding PIO Read Requests to be freed and returned to the        *
 * stack of free entries. This register is used in handling the         *
 * timeout errors that result in a PIO Reply never returning from       *
 * Crosstalk.                                                           *
 * Note that this register does not affect the contents of the IPRTE    *
 * registers. The Valid bits in those registers have to be              *
 * specifically turned off by software.                                 *
 *									*
 ************************************************************************/

typedef union ii_ipdr_u {
	u64 ii_ipdr_regval;
	struct {
		u64 i_te:3;
		u64 i_rsvd_1:1;
		u64 i_pnd:1;
		u64 i_init_rpcnt:1;
		u64 i_rsvd:58;
	} ii_ipdr_fld_s;
} ii_ipdr_u_t;

/************************************************************************
 *									*
 *  A write to this register causes a CRB entry to be returned to the   *
 * queue of free CRBs. The entry should have previously been cleared    *
 * (mark bit) via backdoor access to the pertinent CRB entry. This      *
 * register is used in the last step of handling the errors that are    *
 * captured and marked in CRB entries.  Briefly: 1) first error for     *
 * DMA write from a particular device, and first error for a            *
 * particular BTE stream, lead to a marked CRB entry, and processor     *
 * interrupt, 2) software reads the error information captured in the   *
 * CRB entry, and presumably takes some corrective action, 3)           *
 * software clears the mark bit, and finally 4) software writes to      *
 * the ICDR register to return the CRB entry to the list of free CRB    *
 * entries.                                                             *
 *									*
 ************************************************************************/

typedef union ii_icdr_u {
	u64 ii_icdr_regval;
	struct {
		u64 i_crb_num:4;
		u64 i_pnd:1;
		u64 i_rsvd:59;
	} ii_icdr_fld_s;
} ii_icdr_u_t;

/************************************************************************
 *									*
 *  This register provides debug access to two FIFOs inside of II.      *
 * Both IOQ_MAX* fields of this register contain the instantaneous      *
 * depth (in units of the number of available entries) of the           *
 * associated IOQ FIFO.  A read of this register will return the        *
 * number of free entries on each FIFO at the time of the read.  So     *
 * when a FIFO is idle, the associated field contains the maximum       *
 * depth of the FIFO.  This register is writable for debug reasons      *
 * and is intended to be written with the maximum desired FIFO depth    *
 * while the FIFO is idle. Software must assure that II is idle when    *
 * this register is written. If there are any active entries in any     *
 * of these FIFOs when this register is written, the results are        *
 * undefined.                                                           *
 *									*
 ************************************************************************/

typedef union ii_ifdr_u {
	u64 ii_ifdr_regval;
	struct {
		u64 i_ioq_max_rq:7;
		u64 i_set_ioq_rq:1;
		u64 i_ioq_max_rp:7;
		u64 i_set_ioq_rp:1;
		u64 i_rsvd:48;
	} ii_ifdr_fld_s;
} ii_ifdr_u_t;

/************************************************************************
 *									*
 *  This register allows the II to become sluggish in removing          *
 * messages from its inbound queue (IIQ). This will cause messages to   *
 * back up in either virtual channel. Disabling the "molasses" mode     *
 * subsequently allows the II to be tested under stress. In the         *
 * sluggish ("Molasses") mode, the localized effects of congestion      *
 * can be observed.                                                     *
 *									*
 ************************************************************************/

typedef union ii_iiap_u {
	u64 ii_iiap_regval;
	struct {
		u64 i_rq_mls:6;
		u64 i_rsvd_1:2;
		u64 i_rp_mls:6;
		u64 i_rsvd:50;
	} ii_iiap_fld_s;
} ii_iiap_u_t;

/************************************************************************
 *									*
 *  This register allows several parameters of CRB operation to be      *
 * set. Note that writing to this register can have catastrophic side   *
 * effects, if the CRB is not quiescent, i.e. if the CRB is             *
 * processing protocol messages when the write occurs.                  *
 *									*
 ************************************************************************/

typedef union ii_icmr_u {
	u64 ii_icmr_regval;
	struct {
		u64 i_sp_msg:1;
		u64 i_rd_hdr:1;
		u64 i_rsvd_4:2;
		u64 i_c_cnt:4;
		u64 i_rsvd_3:4;
		u64 i_clr_rqpd:1;
		u64 i_clr_rppd:1;
		u64 i_rsvd_2:2;
		u64 i_fc_cnt:4;
		u64 i_crb_vld:15;
		u64 i_crb_mark:15;
		u64 i_rsvd_1:2;
		u64 i_precise:1;
		u64 i_rsvd:11;
	} ii_icmr_fld_s;
} ii_icmr_u_t;

/************************************************************************
 *									*
 *  This register allows control of the table portion of the CRB        *
 * logic via software. Control operations from this register have       *
 * priority over all incoming Crosstalk or BTE requests.                *
 *									*
 ************************************************************************/

typedef union ii_iccr_u {
	u64 ii_iccr_regval;
	struct {
		u64 i_crb_num:4;
		u64 i_rsvd_1:4;
		u64 i_cmd:8;
		u64 i_pending:1;
		u64 i_rsvd:47;
	} ii_iccr_fld_s;
} ii_iccr_u_t;

/************************************************************************
 *									*
 *  This register allows the maximum timeout value to be programmed.    *
 *									*
 ************************************************************************/

typedef union ii_icto_u {
	u64 ii_icto_regval;
	struct {
		u64 i_timeout:8;
		u64 i_rsvd:56;
	} ii_icto_fld_s;
} ii_icto_u_t;

/************************************************************************
 *									*
 *  This register allows the timeout prescalar to be programmed. An     *
 * internal counter is associated with this register. When the          *
 * internal counter reaches the value of the PRESCALE field, the        *
 * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
 * field). The internal counter resets to zero, and then continues      *
 * counting.                                                            *
 *									*
 ************************************************************************/

typedef union ii_ictp_u {
	u64 ii_ictp_regval;
	struct {
		u64 i_prescale:24;
		u64 i_rsvd:40;
	} ii_ictp_fld_s;
} ii_ictp_u_t;

/************************************************************************
 *									*
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 * The CRB Entry registers can be conceptualized as rows and columns    *
 * (illustrated in the table above). Each row contains the 4            *
 * registers required for a single CRB Entry. The first doubleword      *
 * (column) for each entry is labeled A, and the second doubleword      *
 * (higher address) is labeled B, the third doubleword is labeled C,    *
 * the fourth doubleword is labeled D and the fifth doubleword is       *
 * labeled E. All CRB entries have their addresses on a quarter         *
 * cacheline aligned boundary.                   *
 * Upon reset, only the following fields are initialized: valid         *
 * (VLD), priority count, timeout, timeout valid, and context valid.    *
 * All other bits should be cleared by software before use (after       *
 * recovering any potential error state from before the reset).         *
 * The following four tables summarize the format for the four          *
 * registers that are used for each ICRB# Entry.                        *
 *									*
 ************************************************************************/

typedef union ii_icrb0_a_u {
	u64 ii_icrb0_a_regval;
	struct {
		u64 ia_iow:1;
		u64 ia_vld:1;
		u64 ia_addr:47;
		u64 ia_tnum:5;
		u64 ia_sidn:4;
		u64 ia_rsvd:6;
	} ii_icrb0_a_fld_s;
} ii_icrb0_a_u_t;

/************************************************************************
 *									*
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *									*
 ************************************************************************/

typedef union ii_icrb0_b_u {
	u64 ii_icrb0_b_regval;
	struct {
		u64 ib_xt_err:1;
		u64 ib_mark:1;
		u64 ib_ln_uce:1;
		u64 ib_errcode:3;
		u64 ib_error:1;
		u64 ib_stall__bte_1:1;
		u64 ib_stall__bte_0:1;
		u64 ib_stall__intr:1;
		u64 ib_stall_ib:1;
		u64 ib_intvn:1;
		u64 ib_wb:1;
		u64 ib_hold:1;
		u64 ib_ack:1;
		u64 ib_resp:1;
		u64 ib_ack_cnt:11;
		u64 ib_rsvd:7;
		u64 ib_exc:5;
		u64 ib_init:3;
		u64 ib_imsg:8;
		u64 ib_imsgtype:2;
		u64 ib_use_old:1;
		u64 ib_rsvd_1:11;
	} ii_icrb0_b_fld_s;
} ii_icrb0_b_u_t;

/************************************************************************
 *									*
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *									*
 ************************************************************************/

typedef union ii_icrb0_c_u {
	u64 ii_icrb0_c_regval;
	struct {
		u64 ic_source:15;
		u64 ic_size:2;
		u64 ic_ct:1;
		u64 ic_bte_num:1;
		u64 ic_gbr:1;
		u64 ic_resprqd:1;
		u64 ic_bo:1;
		u64 ic_suppl:15;
		u64 ic_rsvd:27;
	} ii_icrb0_c_fld_s;
} ii_icrb0_c_u_t;

/************************************************************************
 *									*
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *									*
 ************************************************************************/

typedef union ii_icrb0_d_u {
	u64 ii_icrb0_d_regval;
	struct {
		u64 id_pa_be:43;
		u64 id_bte_op:1;
		u64 id_pr_psc:4;
		u64 id_pr_cnt:4;
		u64 id_sleep:1;
		u64 id_rsvd:11;
	} ii_icrb0_d_fld_s;
} ii_icrb0_d_u_t;

/************************************************************************
 *									*
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *									*
 ************************************************************************/

typedef union ii_icrb0_e_u {
	u64 ii_icrb0_e_regval;
	struct {
		u64 ie_timeout:8;
		u64 ie_context:15;
		u64 ie_rsvd:1;
		u64 ie_tvld:1;
		u64 ie_cvld:1;
		u64 ie_rsvd_0:38;
	} ii_icrb0_e_fld_s;
} ii_icrb0_e_u_t;

/************************************************************************
 *									*
 *  This register contains the lower 64 bits of the header of the       *
 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
 * register is set.                                                     *
 *									*
 ************************************************************************/

typedef union ii_icsml_u {
	u64 ii_icsml_regval;
	struct {
		u64 i_tt_addr:47;
		u64 i_newsuppl_ex:14;
		u64 i_reserved:2;
		u64 i_overflow:1;
	} ii_icsml_fld_s;
} ii_icsml_u_t;

/************************************************************************
 *									*
 *  This register contains the middle 64 bits of the header of the      *
 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
 * register is set.                                                     *
 *									*
 ************************************************************************/

typedef union ii_icsmm_u {
	u64 ii_icsmm_regval;
	struct {
		u64 i_tt_ack_cnt:11;
		u64 i_reserved:53;
	} ii_icsmm_fld_s;
} ii_icsmm_u_t;

/************************************************************************
 *									*
 *  This register contains the microscopic state, all the inputs to     *
 * the protocol table, captured with the spurious message. Valid when   *
 * the SP_MSG bit in the ICMR register is set.                          *
 *									*
 ************************************************************************/

typedef union ii_icsmh_u {
	u64 ii_icsmh_regval;
	struct {
		u64 i_tt_vld:1;
		u64 i_xerr:1;
		u64 i_ft_cwact_o:1;
		u64 i_ft_wact_o:1;
		u64 i_ft_active_o:1;
		u64 i_sync:1;
		u64 i_mnusg:1;
		u64 i_mnusz:1;
		u64 i_plusz:1;
		u64 i_plusg:1;
		u64 i_tt_exc:5;
		u64 i_tt_wb:1;
		u64 i_tt_hold:1;
		u64 i_tt_ack:1;
		u64 i_tt_resp:1;
		u64 i_tt_intvn:1;
		u64 i_g_stall_bte1:1;
		u64 i_g_stall_bte0:1;
		u64 i_g_stall_il:1;
		u64 i_g_stall_ib:1;
		u64 i_tt_imsg:8;
		u64 i_tt_imsgtype:2;
		u64 i_tt_use_old:1;
		u64 i_tt_respreqd:1;
		u64 i_tt_bte_num:1;
		u64 i_cbn:1;
		u64 i_match:1;
		u64 i_rpcnt_lt_34:1;
		u64 i_rpcnt_ge_34:1;
		u64 i_rpcnt_lt_18:1;
		u64 i_rpcnt_ge_18:1;
		u64 i_rpcnt_lt_2:1;
		u64 i_rpcnt_ge_2:1;
		u64 i_rqcnt_lt_18:1;
		u64 i_rqcnt_ge_18:1;
		u64 i_rqcnt_lt_2:1;
		u64 i_rqcnt_ge_2:1;
		u64 i_tt_device:7;
		u64 i_tt_init:3;
		u64 i_reserved:5;
	} ii_icsmh_fld_s;
} ii_icsmh_u_t;

/************************************************************************
 *									*
 *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
 * II core and a 3-bit selection signal to the fsbclk domain in the II  *
 * wrapper.                                                             *
 *									*
 ************************************************************************/

typedef union ii_idbss_u {
	u64 ii_idbss_regval;
	struct {
		u64 i_iioclk_core_submenu:3;
		u64 i_rsvd:5;
		u64 i_fsbclk_wrapper_submenu:3;
		u64 i_rsvd_1:5;
		u64 i_iioclk_menu:5;
		u64 i_rsvd_2:43;
	} ii_idbss_fld_s;
} ii_idbss_u_t;

/************************************************************************
 *									*
 * Description:  This register is used to set up the length for a       *
 * transfer and then to monitor the progress of that transfer. This     *
 * register needs to be initialized before a transfer is started. A     *
 * legitimate write to this register will set the Busy bit, clear the   *
 * Error bit, and initialize the length to the value desired.           *
 * While the transfer is in progress, hardware will decrement the       *
 * length field with each successful block that is copied. Once the     *
 * transfer completes, hardware will clear the Busy bit. The length     *
 * field will also contain the number of cache lines left to be         *
 * transferred.                                                         *
 *									*
 ************************************************************************/

typedef union ii_ibls0_u {
	u64 ii_ibls0_regval;
	struct {
		u64 i_length:16;
		u64 i_error:1;
		u64 i_rsvd_1:3;
		u64 i_busy:1;
		u64 i_rsvd:43;
	} ii_ibls0_fld_s;
} ii_ibls0_u_t;

/************************************************************************
 *									*
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *									*
 ************************************************************************/

typedef union ii_ibsa0_u {
	u64 ii_ibsa0_regval;
	struct {
		u64 i_rsvd_1:7;
		u64 i_addr:42;
		u64 i_rsvd:15;
	} ii_ibsa0_fld_s;
} ii_ibsa0_u_t;

/************************************************************************
 *									*
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *									*
 ************************************************************************/

typedef union ii_ibda0_u {
	u64 ii_ibda0_regval;
	struct {
		u64 i_rsvd_1:7;
		u64 i_addr:42;
		u64 i_rsvd:15;
	} ii_ibda0_fld_s;
} ii_ibda0_u_t;

/************************************************************************
 *									*
 *  Writing to this register sets up the attributes of the transfer     *
 * and initiates the transfer operation. Reading this register has      *
 * the side effect of terminating any transfer in progress. Note:       *
 * stopping a transfer midstream could have an adverse impact on the    *
 * other BTE. If a BTE stream has to be stopped (due to error           *
 * handling for example), both BTE streams should be stopped and        *
 * their transfers discarded.                                           *
 *									*
 ************************************************************************/

typedef union ii_ibct0_u {
	u64 ii_ibct0_regval;
	struct {
		u64 i_zerofill:1;
		u64 i_rsvd_2:3;
		u64 i_notify:1;
		u64 i_rsvd_1:3;
		u64 i_poison:1;
		u64 i_rsvd:55;
	} ii_ibct0_fld_s;
} ii_ibct0_u_t;

/************************************************************************
 *									*
 *  This register contains the address to which the WINV is sent.       *
 * This address has to be cache line aligned.                           *
 *									*
 ************************************************************************/

typedef union ii_ibna0_u {
	u64 ii_ibna0_regval;
	struct {
		u64 i_rsvd_1:7;
		u64 i_addr:42;
		u64 i_rsvd:15;
	} ii_ibna0_fld_s;
} ii_ibna0_u_t;

/************************************************************************
 *									*
 *  This register contains the programmable level as well as the node   *
 * ID and PI unit of the processor to which the interrupt will be       *
 * sent.								*
 *									*
 ************************************************************************/

typedef union ii_ibia0_u {
	u64 ii_ibia0_regval;
	struct {
		u64 i_rsvd_2:1;
		u64 i_node_id:11;
		u64 i_rsvd_1:4;
		u64 i_level:7;
		u64 i_rsvd:41;
	} ii_ibia0_fld_s;
} ii_ibia0_u_t;

/************************************************************************
 *									*
 * Description:  This register is used to set up the length for a       *
 * transfer and then to monitor the progress of that transfer. This     *
 * register needs to be initialized before a transfer is started. A     *
 * legitimate write to this register will set the Busy bit, clear the   *
 * Error bit, and initialize the length to the value desired.           *
 * While the transfer is in progress, hardware will decrement the       *
 * length field with each successful block that is copied. Once the     *
 * transfer completes, hardware will clear the Busy bit. The length     *
 * field will also contain the number of cache lines left to be         *
 * transferred.                                                         *
 *									*
 ************************************************************************/

typedef union ii_ibls1_u {
	u64 ii_ibls1_regval;
	struct {
		u64 i_length:16;
		u64 i_error:1;
		u64 i_rsvd_1:3;
		u64 i_busy:1;
		u64 i_rsvd:43;
	} ii_ibls1_fld_s;
} ii_ibls1_u_t;

/************************************************************************
 *									*
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *									*
 ************************************************************************/

typedef union ii_ibsa1_u {
	u64 ii_ibsa1_regval;
	struct {
		u64 i_rsvd_1:7;
		u64 i_addr:33;
		u64 i_rsvd:24;
	} ii_ibsa1_fld_s;
} ii_ibsa1_u_t;

/************************************************************************
 *									*
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *									*
 ************************************************************************/

typedef union ii_ibda1_u {
	u64 ii_ibda1_regval;
	struct {
		u64 i_rsvd_1:7;
		u64 i_addr:33;
		u64 i_rsvd:24;
	} ii_ibda1_fld_s;
} ii_ibda1_u_t;

/************************************************************************
 *									*
 *  Writing to this register sets up the attributes of the transfer     *
 * and initiates the transfer operation. Reading this register has      *
 * the side effect of terminating any transfer in progress. Note:       *
 * stopping a transfer midstream could have an adverse impact on the    *
 * other BTE. If a BTE stream has to be stopped (due to error           *
 * handling for example), both BTE streams should be stopped and        *
 * their transfers discarded.                                           *
 *									*
 ************************************************************************/

typedef union ii_ibct1_u {
	u64 ii_ibct1_regval;
	struct {
		u64 i_zerofill:1;
		u64 i_rsvd_2:3;
		u64 i_notify:1;
		u64 i_rsvd_1:3;
		u64 i_poison:1;
		u64 i_rsvd:55;
	} ii_ibct1_fld_s;
} ii_ibct1_u_t;

/************************************************************************
 *									*
 *  This register contains the address to which the WINV is sent.       *
 * This address has to be cache line aligned.                           *
 *									*
 ************************************************************************/

typedef union ii_ibna1_u {
	u64 ii_ibna1_regval;
	struct {
		u64 i_rsvd_1:7;
		u64 i_addr:33;
		u64 i_rsvd:24;
	} ii_ibna1_fld_s;
} ii_ibna1_u_t;

/************************************************************************
 *									*
 *  This register contains the programmable level as well as the node   *
 * ID and PI unit of the processor to which the interrupt will be       *
 * sent.								*
 *									*
 ************************************************************************/

typedef union ii_ibia1_u {
	u64 ii_ibia1_regval;
	struct {
		u64 i_pi_id:1;
		u64 i_node_id:8;
		u64 i_rsvd_1:7;
		u64 i_level:7;
		u64 i_rsvd:41;
	} ii_ibia1_fld_s;
} ii_ibia1_u_t;

/************************************************************************
 *									*
 *  This register defines the resources that feed information into      *
 * the two performance counters located in the IO Performance           *
 * Profiling Register. There are 17 different quantities that can be    *
 * measured. Given these 17 different options, the two performance      *
 * counters have 15 of them in common; menu selections 0 through 0xE    *
 * are identical for each performance counter. As for the other two     *
 * options, one is available from one performance counter and the       *
 * other is available from the other performance counter. Hence, the    *
 * II supports all 17*16=272 possible combinations of quantities to     *
 * measure.                                                             *
 *									*
 ************************************************************************/

typedef union ii_ipcr_u {
	u64 ii_ipcr_regval;
	struct {
		u64 i_ippr0_c:4;
		u64 i_ippr1_c:4;
		u64 i_icct:8;
		u64 i_rsvd:48;
	} ii_ipcr_fld_s;
} ii_ipcr_u_t;

/************************************************************************
 *									*
 *									*
 *									*
 ************************************************************************/

typedef union ii_ippr_u {
	u64 ii_ippr_regval;
	struct {
		u64 i_ippr0:32;
		u64 i_ippr1:32;
	} ii_ippr_fld_s;
} ii_ippr_u_t;

/************************************************************************
 *									*
 * The following defines which were not formed into structures are	*
 * probably indentical to another register, and the name of the		*
 * register is provided against each of these registers. This		*
 * information needs to be checked carefully				*
 *									*
 *		IIO_ICRB1_A		IIO_ICRB0_A			*
 *		IIO_ICRB1_B		IIO_ICRB0_B			*
 *		IIO_ICRB1_C		IIO_ICRB0_C			*
 *		IIO_ICRB1_D		IIO_ICRB0_D			*
 *		IIO_ICRB1_E		IIO_ICRB0_E			*
 *		IIO_ICRB2_A		IIO_ICRB0_A			*
 *		IIO_ICRB2_B		IIO_ICRB0_B			*
 *		IIO_ICRB2_C		IIO_ICRB0_C			*
 *		IIO_ICRB2_D		IIO_ICRB0_D			*
 *		IIO_ICRB2_E		IIO_ICRB0_E			*
 *		IIO_ICRB3_A		IIO_ICRB0_A			*
 *		IIO_ICRB3_B		IIO_ICRB0_B			*
 *		IIO_ICRB3_C		IIO_ICRB0_C			*
 *		IIO_ICRB3_D		IIO_ICRB0_D			*
 *		IIO_ICRB3_E		IIO_ICRB0_E			*
 *		IIO_ICRB4_A		IIO_ICRB0_A			*
 *		IIO_ICRB4_B		IIO_ICRB0_B			*
 *		IIO_ICRB4_C		IIO_ICRB0_C			*
 *		IIO_ICRB4_D		IIO_ICRB0_D			*
 *		IIO_ICRB4_E		IIO_ICRB0_E			*
 *		IIO_ICRB5_A		IIO_ICRB0_A			*
 *		IIO_ICRB5_B		IIO_ICRB0_B			*
 *		IIO_ICRB5_C		IIO_ICRB0_C			*
 *		IIO_ICRB5_D		IIO_ICRB0_D			*
 *		IIO_ICRB5_E		IIO_ICRB0_E			*
 *		IIO_ICRB6_A		IIO_ICRB0_A			*
 *		IIO_ICRB6_B		IIO_ICRB0_B			*
 *		IIO_ICRB6_C		IIO_ICRB0_C			*
 *		IIO_ICRB6_D		IIO_ICRB0_D			*
 *		IIO_ICRB6_E		IIO_ICRB0_E			*
 *		IIO_ICRB7_A		IIO_ICRB0_A			*
 *		IIO_ICRB7_B		IIO_ICRB0_B			*
 *		IIO_ICRB7_C		IIO_ICRB0_C			*
 *		IIO_ICRB7_D		IIO_ICRB0_D			*
 *		IIO_ICRB7_E		IIO_ICRB0_E			*
 *		IIO_ICRB8_A		IIO_ICRB0_A			*
 *		IIO_ICRB8_B		IIO_ICRB0_B			*
 *		IIO_ICRB8_C		IIO_ICRB0_C			*
 *		IIO_ICRB8_D		IIO_ICRB0_D			*
 *		IIO_ICRB8_E		IIO_ICRB0_E			*
 *		IIO_ICRB9_A		IIO_ICRB0_A			*
 *		IIO_ICRB9_B		IIO_ICRB0_B			*
 *		IIO_ICRB9_C		IIO_ICRB0_C			*
 *		IIO_ICRB9_D		IIO_ICRB0_D			*
 *		IIO_ICRB9_E		IIO_ICRB0_E			*
 *		IIO_ICRBA_A		IIO_ICRB0_A			*
 *		IIO_ICRBA_B		IIO_ICRB0_B			*
 *		IIO_ICRBA_C		IIO_ICRB0_C			*
 *		IIO_ICRBA_D		IIO_ICRB0_D			*
 *		IIO_ICRBA_E		IIO_ICRB0_E			*
 *		IIO_ICRBB_A		IIO_ICRB0_A			*
 *		IIO_ICRBB_B		IIO_ICRB0_B			*
 *		IIO_ICRBB_C		IIO_ICRB0_C			*
 *		IIO_ICRBB_D		IIO_ICRB0_D			*
 *		IIO_ICRBB_E		IIO_ICRB0_E			*
 *		IIO_ICRBC_A		IIO_ICRB0_A			*
 *		IIO_ICRBC_B		IIO_ICRB0_B			*
 *		IIO_ICRBC_C		IIO_ICRB0_C			*
 *		IIO_ICRBC_D		IIO_ICRB0_D			*
 *		IIO_ICRBC_E		IIO_ICRB0_E			*
 *		IIO_ICRBD_A		IIO_ICRB0_A			*
 *		IIO_ICRBD_B		IIO_ICRB0_B			*
 *		IIO_ICRBD_C		IIO_ICRB0_C			*
 *		IIO_ICRBD_D		IIO_ICRB0_D			*
 *		IIO_ICRBD_E		IIO_ICRB0_E			*
 *		IIO_ICRBE_A		IIO_ICRB0_A			*
 *		IIO_ICRBE_B		IIO_ICRB0_B			*
 *		IIO_ICRBE_C		IIO_ICRB0_C			*
 *		IIO_ICRBE_D		IIO_ICRB0_D			*
 *		IIO_ICRBE_E		IIO_ICRB0_E			*
 *									*
 ************************************************************************/

/*
 * Slightly friendlier names for some common registers.
 */
#define IIO_WIDGET              IIO_WID		/* Widget identification */
#define IIO_WIDGET_STAT         IIO_WSTAT	/* Widget status register */
#define IIO_WIDGET_CTRL         IIO_WCR		/* Widget control register */
#define IIO_PROTECT             IIO_ILAPR	/* IO interface protection */
#define IIO_PROTECT_OVRRD       IIO_ILAPO	/* IO protect override */
#define IIO_OUTWIDGET_ACCESS    IIO_IOWA	/* Outbound widget access */
#define IIO_INWIDGET_ACCESS     IIO_IIWA	/* Inbound widget access */
#define IIO_INDEV_ERR_MASK      IIO_IIDEM	/* Inbound device error mask */
#define IIO_LLP_CSR             IIO_ILCSR	/* LLP control and status */
#define IIO_LLP_LOG             IIO_ILLR	/* LLP log */
#define IIO_XTALKCC_TOUT        IIO_IXCC	/* Xtalk credit count timeout */
#define IIO_XTALKTT_TOUT        IIO_IXTT	/* Xtalk tail timeout */
#define IIO_IO_ERR_CLR          IIO_IECLR	/* IO error clear */
#define IIO_IGFX_0 		IIO_IGFX0
#define IIO_IGFX_1 		IIO_IGFX1
#define IIO_IBCT_0		IIO_IBCT0
#define IIO_IBCT_1		IIO_IBCT1
#define IIO_IBLS_0		IIO_IBLS0
#define IIO_IBLS_1		IIO_IBLS1
#define IIO_IBSA_0		IIO_IBSA0
#define IIO_IBSA_1		IIO_IBSA1
#define IIO_IBDA_0		IIO_IBDA0
#define IIO_IBDA_1		IIO_IBDA1
#define IIO_IBNA_0		IIO_IBNA0
#define IIO_IBNA_1		IIO_IBNA1
#define IIO_IBIA_0		IIO_IBIA0
#define IIO_IBIA_1		IIO_IBIA1
#define IIO_IOPRB_0		IIO_IPRB0

#define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))
#define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))
#define IIO_NUM_PRTES		8	/* Total number of PRB table entries */
#define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8))	/* widget ID to its PRTE num */
#define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8))	/* widget ID to its PRTE num */

#define IIO_NUM_IPRBS 		9

#define IIO_LLP_CSR_IS_UP		0x00002000
#define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
#define IIO_LLP_CSR_LLP_STAT_SHFT       12

#define IIO_LLP_CB_MAX  0xffff	/* in ILLR CB_CNT, Max Check Bit errors */
#define IIO_LLP_SN_MAX  0xffff	/* in ILLR SN_CNT, Max Sequence Number errors */

/* key to IIO_PROTECT_OVRRD */
#define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull	/* "SGIrules" */

/* BTE register names */
#define IIO_BTE_STAT_0          IIO_IBLS_0	/* Also BTE length/status 0 */
#define IIO_BTE_SRC_0           IIO_IBSA_0	/* Also BTE source address  0 */
#define IIO_BTE_DEST_0          IIO_IBDA_0	/* Also BTE dest. address 0 */
#define IIO_BTE_CTRL_0          IIO_IBCT_0	/* Also BTE control/terminate 0 */
#define IIO_BTE_NOTIFY_0        IIO_IBNA_0	/* Also BTE notification 0 */
#define IIO_BTE_INT_0           IIO_IBIA_0	/* Also BTE interrupt 0 */
#define IIO_BTE_OFF_0           0	/* Base offset from BTE 0 regs. */
#define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0)	/* Offset from base to BTE 1 */

/* BTE register offsets from base */
#define BTEOFF_STAT             0
#define BTEOFF_SRC      	(IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
#define BTEOFF_DEST     	(IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
#define BTEOFF_CTRL     	(IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
#define BTEOFF_NOTIFY   	(IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
#define BTEOFF_INT      	(IIO_BTE_INT_0 - IIO_BTE_STAT_0)

/* names used in shub diags */
#define IIO_BASE_BTE0   IIO_IBLS_0
#define IIO_BASE_BTE1   IIO_IBLS_1

/*
 * Macro which takes the widget number, and returns the
 * IO PRB address of that widget.
 * value _x is expected to be a widget number in the range
 * 0, 8 - 0xF
 */
#define IIO_IOPRB(_x)	(IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
                	(_x) : \
                	(_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )

/* GFX Flow Control Node/Widget Register */
#define IIO_IGFX_W_NUM_BITS	4	/* size of widget num field */
#define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)
#define IIO_IGFX_W_NUM_SHIFT	0
#define IIO_IGFX_PI_NUM_BITS	1	/* size of PI num field */
#define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)
#define IIO_IGFX_PI_NUM_SHIFT	4
#define IIO_IGFX_N_NUM_BITS	8	/* size of node num field */
#define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)
#define IIO_IGFX_N_NUM_SHIFT	5
#define IIO_IGFX_P_NUM_BITS	1	/* size of processor num field */
#define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)
#define IIO_IGFX_P_NUM_SHIFT	16
#define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
	(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |	 \
	(((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|	 \
	(((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |	 \
	(((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))

/* Scratch registers (all bits available) */
#define IIO_SCRATCH_REG0        IIO_ISCR0
#define IIO_SCRATCH_REG1        IIO_ISCR1
#define IIO_SCRATCH_MASK        0xffffffffffffffffUL

#define IIO_SCRATCH_BIT0_0      0x0000000000000001UL
#define IIO_SCRATCH_BIT0_1      0x0000000000000002UL
#define IIO_SCRATCH_BIT0_2      0x0000000000000004UL
#define IIO_SCRATCH_BIT0_3      0x0000000000000008UL
#define IIO_SCRATCH_BIT0_4      0x0000000000000010UL
#define IIO_SCRATCH_BIT0_5      0x0000000000000020UL
#define IIO_SCRATCH_BIT0_6      0x0000000000000040UL
#define IIO_SCRATCH_BIT0_7      0x0000000000000080UL
#define IIO_SCRATCH_BIT0_8      0x0000000000000100UL
#define IIO_SCRATCH_BIT0_9      0x0000000000000200UL
#define IIO_SCRATCH_BIT0_A      0x0000000000000400UL

#define IIO_SCRATCH_BIT1_0      0x0000000000000001UL
#define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
/* IO Translation Table Entries */
#define IIO_NUM_ITTES   7	/* ITTEs numbered 0..6 */
					/* Hw manuals number them 1..7! */
/*
 * IIO_IMEM Register fields.
 */
#define IIO_IMEM_W0ESD  0x1UL	/* Widget 0 shut down due to error */
#define IIO_IMEM_B0ESD	(1UL << 4)	/* BTE 0 shut down due to error */
#define IIO_IMEM_B1ESD	(1UL << 8)	/* BTE 1 Shut down due to error */

/*
 * As a permanent workaround for a bug in the PI side of the shub, we've
 * redefined big window 7 as small window 0.
 XXX does this still apply for SN1??
 */
#define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)

/*
 * Use the top big window as a surrogate for the first small window
 */
#define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW

#define ILCSR_WARM_RESET        0x100

/*
 * CRB manipulation macros
 *	The CRB macros are slightly complicated, since there are up to
 *	four registers associated with each CRB entry.
 */
#define IIO_NUM_CRBS            15	/* Number of CRBs */
#define IIO_NUM_PC_CRBS         4	/* Number of partial cache CRBs */
#define IIO_ICRB_OFFSET         8
#define IIO_ICRB_0              IIO_ICRB0_A
#define IIO_ICRB_ADDR_SHFT	2	/* Shift to get proper address */
/* XXX - This is now tuneable:
        #define IIO_FIRST_PC_ENTRY 12
 */

#define IIO_ICRB_A(_x)	((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
#define IIO_ICRB_B(_x)	((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
#define IIO_ICRB_C(_x)	((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
#define IIO_ICRB_D(_x)	((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
#define IIO_ICRB_E(_x)	((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))

#define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)

/*
 * values for "ecode" field
 */
#define IIO_ICRB_ECODE_DERR     0	/* Directory error due to IIO access */
#define IIO_ICRB_ECODE_PERR     1	/* Poison error on IO access */
#define IIO_ICRB_ECODE_WERR     2	/* Write error by IIO access
					 * e.g. WINV to a Read only line. */
#define IIO_ICRB_ECODE_AERR     3	/* Access error caused by IIO access */
#define IIO_ICRB_ECODE_PWERR    4	/* Error on partial write */
#define IIO_ICRB_ECODE_PRERR    5	/* Error on partial read  */
#define IIO_ICRB_ECODE_TOUT     6	/* CRB timeout before deallocating */
#define IIO_ICRB_ECODE_XTERR    7	/* Incoming xtalk pkt had error bit */

/*
 * Values for field imsgtype
 */
#define IIO_ICRB_IMSGT_XTALK    0	/* Incoming Meessage from Xtalk */
#define IIO_ICRB_IMSGT_BTE      1	/* Incoming message from BTE    */
#define IIO_ICRB_IMSGT_SN1NET   2	/* Incoming message from SN1 net */
#define IIO_ICRB_IMSGT_CRB      3	/* Incoming message from CRB ???  */

/*
 * values for field initiator.
 */
#define IIO_ICRB_INIT_XTALK     0	/* Message originated in xtalk  */
#define IIO_ICRB_INIT_BTE0      0x1	/* Message originated in BTE 0  */
#define IIO_ICRB_INIT_SN1NET    0x2	/* Message originated in SN1net */
#define IIO_ICRB_INIT_CRB       0x3	/* Message originated in CRB ?  */
#define IIO_ICRB_INIT_BTE1      0x5	/* MEssage originated in BTE 1  */

/*
 * Number of credits Hub widget has while sending req/response to
 * xbow.
 * Value of 3 is required by Xbow 1.1
 * We may be able to increase this to 4 with Xbow 1.2.
 */
#define		   HUBII_XBOW_CREDIT       3
#define		   HUBII_XBOW_REV2_CREDIT  4

/*
 * Number of credits that xtalk devices should use when communicating
 * with a SHub (depth of SHub's queue).
 */
#define HUB_CREDIT 4

/*
 * Some IIO_PRB fields
 */
#define IIO_PRB_MULTI_ERR	(1LL << 63)
#define IIO_PRB_SPUR_RD		(1LL << 51)
#define IIO_PRB_SPUR_WR		(1LL << 50)
#define IIO_PRB_RD_TO		(1LL << 49)
#define IIO_PRB_ERROR		(1LL << 48)

/*************************************************************************

 Some of the IIO field masks and shifts are defined here.
 This is in order to maintain compatibility in SN0 and SN1 code
 
**************************************************************************/

/*
 * ICMR register fields
 * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
 * present in SHub)
 */

#define IIO_ICMR_CRB_VLD_SHFT   20
#define IIO_ICMR_CRB_VLD_MASK	(0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)

#define IIO_ICMR_FC_CNT_SHFT    16
#define IIO_ICMR_FC_CNT_MASK	(0xf << IIO_ICMR_FC_CNT_SHFT)

#define IIO_ICMR_C_CNT_SHFT     4
#define IIO_ICMR_C_CNT_MASK	(0xf << IIO_ICMR_C_CNT_SHFT)

#define IIO_ICMR_PRECISE	(1UL << 52)
#define IIO_ICMR_CLR_RPPD	(1UL << 13)
#define IIO_ICMR_CLR_RQPD	(1UL << 12)

/*
 * IIO PIO Deallocation register field masks : (IIO_IPDR)
 XXX present but not needed in bedrock?  See the manual.
 */
#define IIO_IPDR_PND    	(1 << 4)

/*
 * IIO CRB deallocation register field masks: (IIO_ICDR)
 */
#define IIO_ICDR_PND    	(1 << 4)

/* 
 * IO BTE Length/Status (IIO_IBLS) register bit field definitions
 */
#define IBLS_BUSY		(0x1UL << 20)
#define IBLS_ERROR_SHFT		16
#define IBLS_ERROR		(0x1UL << IBLS_ERROR_SHFT)
#define IBLS_LENGTH_MASK	0xffff

/*
 * IO BTE Control/Terminate register (IBCT) register bit field definitions
 */
#define IBCT_POISON		(0x1UL << 8)
#define IBCT_NOTIFY		(0x1UL << 4)
#define IBCT_ZFIL_MODE		(0x1UL << 0)

/*
 * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
 */
#define IIEPH1_VALID		(1UL << 44)
#define IIEPH1_OVERRUN		(1UL << 40)
#define IIEPH1_ERR_TYPE_SHFT	32
#define IIEPH1_ERR_TYPE_MASK	0xf
#define IIEPH1_SOURCE_SHFT	20
#define IIEPH1_SOURCE_MASK	11
#define IIEPH1_SUPPL_SHFT	8
#define IIEPH1_SUPPL_MASK	11
#define IIEPH1_CMD_SHFT		0
#define IIEPH1_CMD_MASK		7

#define IIEPH2_TAIL		(1UL << 40)
#define IIEPH2_ADDRESS_SHFT	0
#define IIEPH2_ADDRESS_MASK	38

#define IIEPH1_ERR_SHORT_REQ	2
#define IIEPH1_ERR_SHORT_REPLY	3
#define IIEPH1_ERR_LONG_REQ	4
#define IIEPH1_ERR_LONG_REPLY	5

/*
 * IO Error Clear register bit field definitions
 */
#define IECLR_PI1_FWD_INT	(1UL << 31)	/* clear PI1_FORWARD_INT in iidsr */
#define IECLR_PI0_FWD_INT	(1UL << 30)	/* clear PI0_FORWARD_INT in iidsr */
#define IECLR_SPUR_RD_HDR	(1UL << 29)	/* clear valid bit in ixss reg */
#define IECLR_BTE1		(1UL << 18)	/* clear bte error 1 */
#define IECLR_BTE0		(1UL << 17)	/* clear bte error 0 */
#define IECLR_CRAZY		(1UL << 16)	/* clear crazy bit in wstat reg */
#define IECLR_PRB_F		(1UL << 15)	/* clear err bit in PRB_F reg */
#define IECLR_PRB_E		(1UL << 14)	/* clear err bit in PRB_E reg */
#define IECLR_PRB_D		(1UL << 13)	/* clear err bit in PRB_D reg */
#define IECLR_PRB_C		(1UL << 12)	/* clear err bit in PRB_C reg */
#define IECLR_PRB_B		(1UL << 11)	/* clear err bit in PRB_B reg */
#define IECLR_PRB_A		(1UL << 10)	/* clear err bit in PRB_A reg */
#define IECLR_PRB_9		(1UL << 9)	/* clear err bit in PRB_9 reg */
#define IECLR_PRB_8		(1UL << 8)	/* clear err bit in PRB_8 reg */
#define IECLR_PRB_0		(1UL << 0)	/* clear err bit in PRB_0 reg */

/*
 * IIO CRB control register Fields: IIO_ICCR 
 */
#define	IIO_ICCR_PENDING	0x10000
#define	IIO_ICCR_CMD_MASK	0xFF
#define	IIO_ICCR_CMD_SHFT	7
#define	IIO_ICCR_CMD_NOP	0x0	/* No Op */
#define	IIO_ICCR_CMD_WAKE	0x100	/* Reactivate CRB entry and process */
#define	IIO_ICCR_CMD_TIMEOUT	0x200	/* Make CRB timeout & mark invalid */
#define	IIO_ICCR_CMD_EJECT	0x400	/* Contents of entry written to memory
					 * via a WB
					 */
#define	IIO_ICCR_CMD_FLUSH	0x800

/*
 *
 * CRB Register description.
 *
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 *
 * Many of the fields in CRB are status bits used by hardware
 * for implementation of the protocol. It's very dangerous to
 * mess around with the CRB registers.
 *
 * It's OK to read the CRB registers and try to make sense out of the
 * fields in CRB.
 *
 * Updating CRB requires all activities in Hub IIO to be quiesced.
 * otherwise, a write to CRB could corrupt other CRB entries.
 * CRBs are here only as a back door peek to shub IIO's status.
 * Quiescing implies  no dmas no PIOs
 * either directly from the cpu or from sn0net.
 * this is not something that can be done easily. So, AVOID updating
 * CRBs.
 */

/*
 * Easy access macros for CRBs, all 5 registers (A-E)
 */
typedef ii_icrb0_a_u_t icrba_t;
#define a_sidn		ii_icrb0_a_fld_s.ia_sidn
#define a_tnum		ii_icrb0_a_fld_s.ia_tnum
#define a_addr          ii_icrb0_a_fld_s.ia_addr
#define a_valid         ii_icrb0_a_fld_s.ia_vld
#define a_iow           ii_icrb0_a_fld_s.ia_iow
#define a_regvalue	ii_icrb0_a_regval

typedef ii_icrb0_b_u_t icrbb_t;
#define b_use_old       ii_icrb0_b_fld_s.ib_use_old
#define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
#define b_imsg          ii_icrb0_b_fld_s.ib_imsg
#define b_initiator     ii_icrb0_b_fld_s.ib_init
#define b_exc           ii_icrb0_b_fld_s.ib_exc
#define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt
#define b_resp          ii_icrb0_b_fld_s.ib_resp
#define b_ack           ii_icrb0_b_fld_s.ib_ack
#define b_hold          ii_icrb0_b_fld_s.ib_hold
#define b_wb            ii_icrb0_b_fld_s.ib_wb
#define b_intvn         ii_icrb0_b_fld_s.ib_intvn
#define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib
#define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr
#define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0
#define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1
#define b_error         ii_icrb0_b_fld_s.ib_error
#define b_ecode         ii_icrb0_b_fld_s.ib_errcode
#define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce
#define b_mark          ii_icrb0_b_fld_s.ib_mark
#define b_xerr          ii_icrb0_b_fld_s.ib_xt_err
#define b_regvalue	ii_icrb0_b_regval

typedef ii_icrb0_c_u_t icrbc_t;
#define c_suppl         ii_icrb0_c_fld_s.ic_suppl
#define c_barrop        ii_icrb0_c_fld_s.ic_bo
#define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
#define c_gbr           ii_icrb0_c_fld_s.ic_gbr
#define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
#define c_cohtrans      ii_icrb0_c_fld_s.ic_ct
#define c_xtsize        ii_icrb0_c_fld_s.ic_size
#define c_source        ii_icrb0_c_fld_s.ic_source
#define c_regvalue	ii_icrb0_c_regval

typedef ii_icrb0_d_u_t icrbd_t;
#define d_sleep         ii_icrb0_d_fld_s.id_sleep
#define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt
#define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc
#define d_bteop         ii_icrb0_d_fld_s.id_bte_op
#define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
#define d_benable       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
#define d_regvalue	ii_icrb0_d_regval

typedef ii_icrb0_e_u_t icrbe_t;
#define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld
#define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld
#define icrbe_context   ii_icrb0_e_fld_s.ie_context
#define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout
#define e_regvalue	ii_icrb0_e_regval

/* Number of widgets supported by shub */
#define HUB_NUM_WIDGET          9
#define HUB_WIDGET_ID_MIN       0x8
#define HUB_WIDGET_ID_MAX       0xf

#define HUB_WIDGET_PART_NUM     0xc120
#define MAX_HUBS_PER_XBOW       2

/* A few more #defines for backwards compatibility */
#define iprb_t          ii_iprb0_u_t
#define iprb_regval     ii_iprb0_regval
#define iprb_mult_err	ii_iprb0_fld_s.i_mult_err
#define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd
#define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr
#define iprb_rd_to	ii_iprb0_fld_s.i_rd_to
#define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
#define iprb_error      ii_iprb0_fld_s.i_error
#define iprb_ff         ii_iprb0_fld_s.i_f
#define iprb_mode       ii_iprb0_fld_s.i_m
#define iprb_bnakctr    ii_iprb0_fld_s.i_nb
#define iprb_anakctr    ii_iprb0_fld_s.i_na
#define iprb_xtalkctr   ii_iprb0_fld_s.i_c

#define LNK_STAT_WORKING        0x2		/* LLP is working */

#define IIO_WSTAT_ECRAZY	(1ULL << 32)	/* Hub gone crazy */
#define IIO_WSTAT_TXRETRY	(1ULL << 9)	/* Hub Tx Retry timeout */
#define IIO_WSTAT_TXRETRY_MASK  0x7F		/* should be 0xFF?? */
#define IIO_WSTAT_TXRETRY_SHFT  16
#define IIO_WSTAT_TXRETRY_CNT(w)	(((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
                          		IIO_WSTAT_TXRETRY_MASK)

/* Number of II perf. counters we can multiplex at once */

#define IO_PERF_SETS	32

/* Bit for the widget in inbound access register */
#define IIO_IIWA_WIDGET(_w)	((u64)(1ULL << _w))
/* Bit for the widget in outbound access register */
#define IIO_IOWA_WIDGET(_w)	((u64)(1ULL << _w))

/* NOTE: The following define assumes that we are going to get
 * widget numbers from 8 thru F and the device numbers within
 * widget from 0 thru 7.
 */
#define IIO_IIDEM_WIDGETDEV_MASK(w, d)	((u64)(1ULL << (8 * ((w) - 8) + (d))))

/* IO Interrupt Destination Register */
#define IIO_IIDSR_SENT_SHIFT    28
#define IIO_IIDSR_SENT_MASK     0x30000000
#define IIO_IIDSR_ENB_SHIFT     24
#define IIO_IIDSR_ENB_MASK      0x01000000
#define IIO_IIDSR_NODE_SHIFT    9
#define IIO_IIDSR_NODE_MASK     0x000ff700
#define IIO_IIDSR_PI_ID_SHIFT   8
#define IIO_IIDSR_PI_ID_MASK    0x00000100
#define IIO_IIDSR_LVL_SHIFT     0
#define IIO_IIDSR_LVL_MASK      0x000000ff

/* Xtalk timeout threshold register (IIO_IXTT) */
#define IXTT_RRSP_TO_SHFT	55	/* read response timeout */
#define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)
#define IXTT_RRSP_PS_SHFT	32	/* read responsed TO prescalar */
#define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
#define IXTT_TAIL_TO_SHFT	0	/* tail timeout counter threshold */
#define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)

/*
 * The IO LLP control status register and widget control register
 */

typedef union hubii_wcr_u {
	u64 wcr_reg_value;
	struct {
		u64 wcr_widget_id:4,	/* LLP crossbar credit */
		 wcr_tag_mode:1,	/* Tag mode */
		 wcr_rsvd1:8,	/* Reserved */
		 wcr_xbar_crd:3,	/* LLP crossbar credit */
		 wcr_f_bad_pkt:1,	/* Force bad llp pkt enable */
		 wcr_dir_con:1,	/* widget direct connect */
		 wcr_e_thresh:5,	/* elasticity threshold */
		 wcr_rsvd:41;	/* unused */
	} wcr_fields_s;
} hubii_wcr_t;

#define iwcr_dir_con    wcr_fields_s.wcr_dir_con

/* The structures below are defined to extract and modify the ii
performance registers */

/* io_perf_sel allows the caller to specify what tests will be
   performed */

typedef union io_perf_sel {
	u64 perf_sel_reg;
	struct {
		u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
	} perf_sel_bits;
} io_perf_sel_t;

/* io_perf_cnt is to extract the count from the shub registers. Due to
   hardware problems there is only one counter, not two. */

typedef union io_perf_cnt {
	u64 perf_cnt;
	struct {
		u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
	} perf_cnt_bits;

} io_perf_cnt_t;

typedef union iprte_a {
	u64 entry;
	struct {
		u64 i_rsvd_1:3;
		u64 i_addr:38;
		u64 i_init:3;
		u64 i_source:8;
		u64 i_rsvd:2;
		u64 i_widget:4;
		u64 i_to_cnt:5;
		u64 i_vld:1;
	} iprte_fields;
} iprte_a_t;

#endif				/* _ASM_IA64_SN_SHUBIO_H */