summaryrefslogtreecommitdiff
path: root/arch/i386/kernel/efi.c
blob: ecad519fd395f6a17607c65737713f5aca26c3d3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * Extensible Firmware Interface
 *
 * Based on Extensible Firmware Interface Specification version 1.0
 *
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999-2002 Hewlett-Packard Co.
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *	Stephane Eranian <eranian@hpl.hp.com>
 *
 * All EFI Runtime Services are not implemented yet as EFI only
 * supports physical mode addressing on SoftSDV. This is to be fixed
 * in a future version.  --drummond 1999-07-20
 *
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 *
 * Goutham Rao: <goutham.rao@intel.com>
 *	Skip non-WB memory and ignore empty memory ranges.
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/efi.h>
#include <linux/kexec.h>

#include <asm/setup.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>

#define EFI_DEBUG	0
#define PFX 		"EFI: "

extern efi_status_t asmlinkage efi_call_phys(void *, ...);

struct efi efi;
EXPORT_SYMBOL(efi);
static struct efi efi_phys;
struct efi_memory_map memmap;

/*
 * We require an early boot_ioremap mapping mechanism initially
 */
extern void * boot_ioremap(unsigned long, unsigned long);

/*
 * To make EFI call EFI runtime service in physical addressing mode we need
 * prelog/epilog before/after the invocation to disable interrupt, to
 * claim EFI runtime service handler exclusively and to duplicate a memory in
 * low memory space say 0 - 3G.
 */

static unsigned long efi_rt_eflags;
static DEFINE_SPINLOCK(efi_rt_lock);
static pgd_t efi_bak_pg_dir_pointer[2];

static void efi_call_phys_prelog(void)
{
	unsigned long cr4;
	unsigned long temp;

	spin_lock(&efi_rt_lock);
	local_irq_save(efi_rt_eflags);

	/*
	 * If I don't have PSE, I should just duplicate two entries in page
	 * directory. If I have PSE, I just need to duplicate one entry in
	 * page directory.
	 */
	cr4 = read_cr4();

	if (cr4 & X86_CR4_PSE) {
		efi_bak_pg_dir_pointer[0].pgd =
		    swapper_pg_dir[pgd_index(0)].pgd;
		swapper_pg_dir[0].pgd =
		    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
	} else {
		efi_bak_pg_dir_pointer[0].pgd =
		    swapper_pg_dir[pgd_index(0)].pgd;
		efi_bak_pg_dir_pointer[1].pgd =
		    swapper_pg_dir[pgd_index(0x400000)].pgd;
		swapper_pg_dir[pgd_index(0)].pgd =
		    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
		temp = PAGE_OFFSET + 0x400000;
		swapper_pg_dir[pgd_index(0x400000)].pgd =
		    swapper_pg_dir[pgd_index(temp)].pgd;
	}

	/*
	 * After the lock is released, the original page table is restored.
	 */
	local_flush_tlb();

	cpu_gdt_descr[0].address = __pa(cpu_gdt_descr[0].address);
	load_gdt((struct Xgt_desc_struct *) __pa(&cpu_gdt_descr[0]));
}

static void efi_call_phys_epilog(void)
{
	unsigned long cr4;

	cpu_gdt_descr[0].address =
		(unsigned long) __va(cpu_gdt_descr[0].address);
	load_gdt(&cpu_gdt_descr[0]);
	cr4 = read_cr4();

	if (cr4 & X86_CR4_PSE) {
		swapper_pg_dir[pgd_index(0)].pgd =
		    efi_bak_pg_dir_pointer[0].pgd;
	} else {
		swapper_pg_dir[pgd_index(0)].pgd =
		    efi_bak_pg_dir_pointer[0].pgd;
		swapper_pg_dir[pgd_index(0x400000)].pgd =
		    efi_bak_pg_dir_pointer[1].pgd;
	}

	/*
	 * After the lock is released, the original page table is restored.
	 */
	local_flush_tlb();

	local_irq_restore(efi_rt_eflags);
	spin_unlock(&efi_rt_lock);
}

static efi_status_t
phys_efi_set_virtual_address_map(unsigned long memory_map_size,
				 unsigned long descriptor_size,
				 u32 descriptor_version,
				 efi_memory_desc_t *virtual_map)
{
	efi_status_t status;

	efi_call_phys_prelog();
	status = efi_call_phys(efi_phys.set_virtual_address_map,
				     memory_map_size, descriptor_size,
				     descriptor_version, virtual_map);
	efi_call_phys_epilog();
	return status;
}

static efi_status_t
phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
	efi_status_t status;

	efi_call_phys_prelog();
	status = efi_call_phys(efi_phys.get_time, tm, tc);
	efi_call_phys_epilog();
	return status;
}

inline int efi_set_rtc_mmss(unsigned long nowtime)
{
	int real_seconds, real_minutes;
	efi_status_t 	status;
	efi_time_t 	eft;
	efi_time_cap_t 	cap;

	spin_lock(&efi_rt_lock);
	status = efi.get_time(&eft, &cap);
	spin_unlock(&efi_rt_lock);
	if (status != EFI_SUCCESS)
		panic("Ooops, efitime: can't read time!\n");
	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;

	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
		real_minutes += 30;
	real_minutes %= 60;

	eft.minute = real_minutes;
	eft.second = real_seconds;

	if (status != EFI_SUCCESS) {
		printk("Ooops: efitime: can't read time!\n");
		return -1;
	}
	return 0;
}
/*
 * This should only be used during kernel init and before runtime
 * services have been remapped, therefore, we'll need to call in physical
 * mode.  Note, this call isn't used later, so mark it __init.
 */
inline unsigned long __init efi_get_time(void)
{
	efi_status_t status;
	efi_time_t eft;
	efi_time_cap_t cap;

	status = phys_efi_get_time(&eft, &cap);
	if (status != EFI_SUCCESS)
		printk("Oops: efitime: can't read time status: 0x%lx\n",status);

	return mktime(eft.year, eft.month, eft.day, eft.hour,
			eft.minute, eft.second);
}

int is_available_memory(efi_memory_desc_t * md)
{
	if (!(md->attribute & EFI_MEMORY_WB))
		return 0;

	switch (md->type) {
		case EFI_LOADER_CODE:
		case EFI_LOADER_DATA:
		case EFI_BOOT_SERVICES_CODE:
		case EFI_BOOT_SERVICES_DATA:
		case EFI_CONVENTIONAL_MEMORY:
			return 1;
	}
	return 0;
}

/*
 * We need to map the EFI memory map again after paging_init().
 */
void __init efi_map_memmap(void)
{
	memmap.map = NULL;

	memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
			(memmap.nr_map * memmap.desc_size));
	if (memmap.map == NULL)
		printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");

	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
}

#if EFI_DEBUG
static void __init print_efi_memmap(void)
{
	efi_memory_desc_t *md;
	void *p;
	int i;

	for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
		md = p;
		printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
			i, md->type, md->attribute, md->phys_addr,
			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
	}
}
#endif  /*  EFI_DEBUG  */

/*
 * Walks the EFI memory map and calls CALLBACK once for each EFI
 * memory descriptor that has memory that is available for kernel use.
 */
void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
{
	int prev_valid = 0;
	struct range {
		unsigned long start;
		unsigned long end;
	} prev, curr;
	efi_memory_desc_t *md;
	unsigned long start, end;
	void *p;

	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
		md = p;

		if ((md->num_pages == 0) || (!is_available_memory(md)))
			continue;

		curr.start = md->phys_addr;
		curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);

		if (!prev_valid) {
			prev = curr;
			prev_valid = 1;
		} else {
			if (curr.start < prev.start)
				printk(KERN_INFO PFX "Unordered memory map\n");
			if (prev.end == curr.start)
				prev.end = curr.end;
			else {
				start =
				    (unsigned long) (PAGE_ALIGN(prev.start));
				end = (unsigned long) (prev.end & PAGE_MASK);
				if ((end > start)
				    && (*callback) (start, end, arg) < 0)
					return;
				prev = curr;
			}
		}
	}
	if (prev_valid) {
		start = (unsigned long) PAGE_ALIGN(prev.start);
		end = (unsigned long) (prev.end & PAGE_MASK);
		if (end > start)
			(*callback) (start, end, arg);
	}
}

void __init efi_init(void)
{
	efi_config_table_t *config_tables;
	efi_runtime_services_t *runtime;
	efi_char16_t *c16;
	char vendor[100] = "unknown";
	unsigned long num_config_tables;
	int i = 0;

	memset(&efi, 0, sizeof(efi) );
	memset(&efi_phys, 0, sizeof(efi_phys));

	efi_phys.systab = EFI_SYSTAB;
	memmap.phys_map = EFI_MEMMAP;
	memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
	memmap.desc_version = EFI_MEMDESC_VERSION;
	memmap.desc_size = EFI_MEMDESC_SIZE;

	efi.systab = (efi_system_table_t *)
		boot_ioremap((unsigned long) efi_phys.systab,
			sizeof(efi_system_table_t));
	/*
	 * Verify the EFI Table
	 */
	if (efi.systab == NULL)
		printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
		printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
	if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
		printk(KERN_ERR PFX
		       "Warning: EFI system table major version mismatch: "
		       "got %d.%02d, expected %d.%02d\n",
		       efi.systab->hdr.revision >> 16,
		       efi.systab->hdr.revision & 0xffff,
		       EFI_SYSTEM_TABLE_REVISION >> 16,
		       EFI_SYSTEM_TABLE_REVISION & 0xffff);
	/*
	 * Grab some details from the system table
	 */
	num_config_tables = efi.systab->nr_tables;
	config_tables = (efi_config_table_t *)efi.systab->tables;
	runtime = efi.systab->runtime;

	/*
	 * Show what we know for posterity
	 */
	c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
	if (c16) {
		for (i = 0; i < sizeof(vendor) && *c16; ++i)
			vendor[i] = *c16++;
		vendor[i] = '\0';
	} else
		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");

	printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
	       efi.systab->hdr.revision >> 16,
	       efi.systab->hdr.revision & 0xffff, vendor);

	/*
	 * Let's see what config tables the firmware passed to us.
	 */
	config_tables = (efi_config_table_t *)
				boot_ioremap((unsigned long) config_tables,
			        num_config_tables * sizeof(efi_config_table_t));

	if (config_tables == NULL)
		printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");

	for (i = 0; i < num_config_tables; i++) {
		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
			efi.mps = (void *)config_tables[i].table;
			printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
		} else
		    if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
			efi.acpi20 = __va(config_tables[i].table);
			printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
		} else
		    if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
			efi.acpi = __va(config_tables[i].table);
			printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
		} else
		    if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
			efi.smbios = (void *) config_tables[i].table;
			printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
		} else
		    if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
			efi.hcdp = (void *)config_tables[i].table;
			printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
		} else
		    if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
			efi.uga = (void *)config_tables[i].table;
			printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
		}
	}
	printk("\n");

	/*
	 * Check out the runtime services table. We need to map
	 * the runtime services table so that we can grab the physical
	 * address of several of the EFI runtime functions, needed to
	 * set the firmware into virtual mode.
	 */

	runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
						runtime,
				      		sizeof(efi_runtime_services_t));
	if (runtime != NULL) {
		/*
	 	 * We will only need *early* access to the following
		 * two EFI runtime services before set_virtual_address_map
		 * is invoked.
 	 	 */
		efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
		efi_phys.set_virtual_address_map =
			(efi_set_virtual_address_map_t *)
				runtime->set_virtual_address_map;
	} else
		printk(KERN_ERR PFX "Could not map the runtime service table!\n");

	/* Map the EFI memory map for use until paging_init() */
	memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
	if (memmap.map == NULL)
		printk(KERN_ERR PFX "Could not map the EFI memory map!\n");

	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);

#if EFI_DEBUG
	print_efi_memmap();
#endif
}

static inline void __init check_range_for_systab(efi_memory_desc_t *md)
{
	if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
		((unsigned long)efi_phys.systab < md->phys_addr +
		((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
		unsigned long addr;

		addr = md->virt_addr - md->phys_addr +
			(unsigned long)efi_phys.systab;
		efi.systab = (efi_system_table_t *)addr;
	}
}

/*
 * This function will switch the EFI runtime services to virtual mode.
 * Essentially, look through the EFI memmap and map every region that
 * has the runtime attribute bit set in its memory descriptor and update
 * that memory descriptor with the virtual address obtained from ioremap().
 * This enables the runtime services to be called without having to
 * thunk back into physical mode for every invocation.
 */

void __init efi_enter_virtual_mode(void)
{
	efi_memory_desc_t *md;
	efi_status_t status;
	void *p;

	efi.systab = NULL;

	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
		md = p;

		if (!(md->attribute & EFI_MEMORY_RUNTIME))
			continue;

		md->virt_addr = (unsigned long)ioremap(md->phys_addr,
			md->num_pages << EFI_PAGE_SHIFT);
		if (!(unsigned long)md->virt_addr) {
			printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
				(unsigned long)md->phys_addr);
		}
		/* update the virtual address of the EFI system table */
		check_range_for_systab(md);
	}

	if (!efi.systab)
		BUG();

	status = phys_efi_set_virtual_address_map(
			memmap.desc_size * memmap.nr_map,
			memmap.desc_size,
			memmap.desc_version,
		       	memmap.phys_map);

	if (status != EFI_SUCCESS) {
		printk (KERN_ALERT "You are screwed! "
			"Unable to switch EFI into virtual mode "
			"(status=%lx)\n", status);
		panic("EFI call to SetVirtualAddressMap() failed!");
	}

	/*
	 * Now that EFI is in virtual mode, update the function
	 * pointers in the runtime service table to the new virtual addresses.
	 */

	efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
	efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
	efi.get_wakeup_time = (efi_get_wakeup_time_t *)
					efi.systab->runtime->get_wakeup_time;
	efi.set_wakeup_time = (efi_set_wakeup_time_t *)
					efi.systab->runtime->set_wakeup_time;
	efi.get_variable = (efi_get_variable_t *)
					efi.systab->runtime->get_variable;
	efi.get_next_variable = (efi_get_next_variable_t *)
					efi.systab->runtime->get_next_variable;
	efi.set_variable = (efi_set_variable_t *)
					efi.systab->runtime->set_variable;
	efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
					efi.systab->runtime->get_next_high_mono_count;
	efi.reset_system = (efi_reset_system_t *)
					efi.systab->runtime->reset_system;
}

void __init
efi_initialize_iomem_resources(struct resource *code_resource,
			       struct resource *data_resource)
{
	struct resource *res;
	efi_memory_desc_t *md;
	void *p;

	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
		md = p;

		if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
		    0x100000000ULL)
			continue;
		res = alloc_bootmem_low(sizeof(struct resource));
		switch (md->type) {
		case EFI_RESERVED_TYPE:
			res->name = "Reserved Memory";
			break;
		case EFI_LOADER_CODE:
			res->name = "Loader Code";
			break;
		case EFI_LOADER_DATA:
			res->name = "Loader Data";
			break;
		case EFI_BOOT_SERVICES_DATA:
			res->name = "BootServices Data";
			break;
		case EFI_BOOT_SERVICES_CODE:
			res->name = "BootServices Code";
			break;
		case EFI_RUNTIME_SERVICES_CODE:
			res->name = "Runtime Service Code";
			break;
		case EFI_RUNTIME_SERVICES_DATA:
			res->name = "Runtime Service Data";
			break;
		case EFI_CONVENTIONAL_MEMORY:
			res->name = "Conventional Memory";
			break;
		case EFI_UNUSABLE_MEMORY:
			res->name = "Unusable Memory";
			break;
		case EFI_ACPI_RECLAIM_MEMORY:
			res->name = "ACPI Reclaim";
			break;
		case EFI_ACPI_MEMORY_NVS:
			res->name = "ACPI NVS";
			break;
		case EFI_MEMORY_MAPPED_IO:
			res->name = "Memory Mapped IO";
			break;
		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
			res->name = "Memory Mapped IO Port Space";
			break;
		default:
			res->name = "Reserved";
			break;
		}
		res->start = md->phys_addr;
		res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
		if (request_resource(&iomem_resource, res) < 0)
			printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n",
				res->name, res->start, res->end);
		/*
		 * We don't know which region contains kernel data so we try
		 * it repeatedly and let the resource manager test it.
		 */
		if (md->type == EFI_CONVENTIONAL_MEMORY) {
			request_resource(res, code_resource);
			request_resource(res, data_resource);
#ifdef CONFIG_KEXEC
			request_resource(res, &crashk_res);
#endif
		}
	}
}

/*
 * Convenience functions to obtain memory types and attributes
 */

u32 efi_mem_type(unsigned long phys_addr)
{
	efi_memory_desc_t *md;
	void *p;

	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
		md = p;
		if ((md->phys_addr <= phys_addr) && (phys_addr <
			(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
			return md->type;
	}
	return 0;
}

u64 efi_mem_attributes(unsigned long phys_addr)
{
	efi_memory_desc_t *md;
	void *p;

	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
		md = p;
		if ((md->phys_addr <= phys_addr) && (phys_addr <
			(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
			return md->attribute;
	}
	return 0;
}