summaryrefslogtreecommitdiff
path: root/arch/cris/arch-v32/kernel/kgdb.c
blob: 4e2e2e271efbd5b042d1660b14392fff42d4cdfe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
/*
 *  arch/cris/arch-v32/kernel/kgdb.c
 *
 *  CRIS v32 version by Orjan Friberg, Axis Communications AB.
 *
 *  S390 version
 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
 *
 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
 *
 *  Contributed by HP Systems
 *
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 *
 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
 *
 *  Copyright (C) 1995 Andreas Busse
 */

/* FIXME: Check the documentation. */

/*
 *  kgdb usage notes:
 *  -----------------
 *
 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
 * built with different gcc flags: "-g" is added to get debug infos, and
 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
 * before compresion. Such a kernel will behave just as usually, except if
 * given a "debug=<device>" command line option. (Only serial devices are
 * allowed for <device>, i.e. no printers or the like; possible values are
 * machine depedend and are the same as for the usual debug device, the one
 * for logging kernel messages.) If that option is given and the device can be
 * initialized, the kernel will connect to the remote gdb in trap_init(). The
 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
 * implementation.
 *
 * To start a debugging session, start that gdb with the debugging kernel
 * image (the one with the symbols, vmlinux.debug) named on the command line.
 * This file will be used by gdb to get symbol and debugging infos about the
 * kernel. Next, select remote debug mode by
 *    target remote <device>
 * where <device> is the name of the serial device over which the debugged
 * machine is connected. Maybe you have to adjust the baud rate by
 *    set remotebaud <rate>
 * or also other parameters with stty:
 *    shell stty ... </dev/...
 * If the kernel to debug has already booted, it waited for gdb and now
 * connects, and you'll see a breakpoint being reported. If the kernel isn't
 * running yet, start it now. The order of gdb and the kernel doesn't matter.
 * Another thing worth knowing about in the getting-started phase is how to
 * debug the remote protocol itself. This is activated with
 *    set remotedebug 1
 * gdb will then print out each packet sent or received. You'll also get some
 * messages about the gdb stub on the console of the debugged machine.
 *
 * If all that works, you can use lots of the usual debugging techniques on
 * the kernel, e.g. inspecting and changing variables/memory, setting
 * breakpoints, single stepping and so on. It's also possible to interrupt the
 * debugged kernel by pressing C-c in gdb. Have fun! :-)
 *
 * The gdb stub is entered (and thus the remote gdb gets control) in the
 * following situations:
 *
 *  - If breakpoint() is called. This is just after kgdb initialization, or if
 *    a breakpoint() call has been put somewhere into the kernel source.
 *    (Breakpoints can of course also be set the usual way in gdb.)
 *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
 *
 *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
 *    are entered. All the CPU exceptions are mapped to (more or less..., see
 *    the hard_trap_info array below) appropriate signal, which are reported
 *    to gdb. die_if_kernel() is usually called after some kind of access
 *    error and thus is reported as SIGSEGV.
 *
 *  - When panic() is called. This is reported as SIGABRT.
 *
 *  - If C-c is received over the serial line, which is treated as
 *    SIGINT.
 *
 * Of course, all these signals are just faked for gdb, since there is no
 * signal concept as such for the kernel. It also isn't possible --obviously--
 * to set signal handlers from inside gdb, or restart the kernel with a
 * signal.
 *
 * Current limitations:
 *
 *  - While the kernel is stopped, interrupts are disabled for safety reasons
 *    (i.e., variables not changing magically or the like). But this also
 *    means that the clock isn't running anymore, and that interrupts from the
 *    hardware may get lost/not be served in time. This can cause some device
 *    errors...
 *
 *  - When single-stepping, only one instruction of the current thread is
 *    executed, but interrupts are allowed for that time and will be serviced
 *    if pending. Be prepared for that.
 *
 *  - All debugging happens in kernel virtual address space. There's no way to
 *    access physical memory not mapped in kernel space, or to access user
 *    space. A way to work around this is using get_user_long & Co. in gdb
 *    expressions, but only for the current process.
 *
 *  - Interrupting the kernel only works if interrupts are currently allowed,
 *    and the interrupt of the serial line isn't blocked by some other means
 *    (IPL too high, disabled, ...)
 *
 *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
 *    (e.g. accessing invalid memory) may not be caught correctly. This could
 *    be removed in future by introducing a stack of struct registers.
 *
 */

/*
 *  To enable debugger support, two things need to happen.  One, a
 *  call to kgdb_init() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
 *							   baud rate
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 */


#include <linux/string.h>
#include <linux/signal.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/linkage.h>
#include <linux/reboot.h>

#include <asm/setup.h>
#include <asm/ptrace.h>

#include <asm/irq.h>
#include <asm/arch/hwregs/reg_map.h>
#include <asm/arch/hwregs/reg_rdwr.h>
#include <asm/arch/hwregs/intr_vect_defs.h>
#include <asm/arch/hwregs/ser_defs.h>

/* From entry.S. */
extern void gdb_handle_exception(void);
/* From kgdb_asm.S. */
extern void kgdb_handle_exception(void);

static int kgdb_started = 0;

/********************************* Register image ****************************/

typedef
struct register_image
{
	                      /* Offset */
	unsigned int   r0;    /* 0x00 */
	unsigned int   r1;    /* 0x04 */
	unsigned int   r2;    /* 0x08 */
	unsigned int   r3;    /* 0x0C */
	unsigned int   r4;    /* 0x10 */
	unsigned int   r5;    /* 0x14 */
	unsigned int   r6;    /* 0x18 */
	unsigned int   r7;    /* 0x1C */
	unsigned int   r8;    /* 0x20; Frame pointer (if any) */
	unsigned int   r9;    /* 0x24 */
	unsigned int   r10;   /* 0x28 */
	unsigned int   r11;   /* 0x2C */
	unsigned int   r12;   /* 0x30 */
	unsigned int   r13;   /* 0x34 */
	unsigned int   sp;    /* 0x38; R14, Stack pointer */
	unsigned int   acr;   /* 0x3C; R15, Address calculation register. */

	unsigned char  bz;    /* 0x40; P0, 8-bit zero register */
	unsigned char  vr;    /* 0x41; P1, Version register (8-bit) */
	unsigned int   pid;   /* 0x42; P2, Process ID */
	unsigned char  srs;   /* 0x46; P3, Support register select (8-bit) */
        unsigned short wz;    /* 0x47; P4, 16-bit zero register */
	unsigned int   exs;   /* 0x49; P5, Exception status */
	unsigned int   eda;   /* 0x4D; P6, Exception data address */
	unsigned int   mof;   /* 0x51; P7, Multiply overflow register */
	unsigned int   dz;    /* 0x55; P8, 32-bit zero register */
	unsigned int   ebp;   /* 0x59; P9, Exception base pointer */
	unsigned int   erp;   /* 0x5D; P10, Exception return pointer. Contains the PC we are interested in. */
	unsigned int   srp;   /* 0x61; P11, Subroutine return pointer */
	unsigned int   nrp;   /* 0x65; P12, NMI return pointer */
	unsigned int   ccs;   /* 0x69; P13, Condition code stack */
	unsigned int   usp;   /* 0x6D; P14, User mode stack pointer */
	unsigned int   spc;   /* 0x71; P15, Single step PC */
	unsigned int   pc;    /* 0x75; Pseudo register (for the most part set to ERP). */

} registers;

typedef
struct bp_register_image
{
	/* Support register bank 0. */
	unsigned int   s0_0;
	unsigned int   s1_0;
	unsigned int   s2_0;
	unsigned int   s3_0;
	unsigned int   s4_0;
	unsigned int   s5_0;
	unsigned int   s6_0;
	unsigned int   s7_0;
	unsigned int   s8_0;
	unsigned int   s9_0;
	unsigned int   s10_0;
	unsigned int   s11_0;
	unsigned int   s12_0;
	unsigned int   s13_0;
	unsigned int   s14_0;
	unsigned int   s15_0;

	/* Support register bank 1. */
	unsigned int   s0_1;
	unsigned int   s1_1;
	unsigned int   s2_1;
	unsigned int   s3_1;
	unsigned int   s4_1;
	unsigned int   s5_1;
	unsigned int   s6_1;
	unsigned int   s7_1;
	unsigned int   s8_1;
	unsigned int   s9_1;
	unsigned int   s10_1;
	unsigned int   s11_1;
	unsigned int   s12_1;
	unsigned int   s13_1;
	unsigned int   s14_1;
	unsigned int   s15_1;

	/* Support register bank 2. */
	unsigned int   s0_2;
	unsigned int   s1_2;
	unsigned int   s2_2;
	unsigned int   s3_2;
	unsigned int   s4_2;
	unsigned int   s5_2;
	unsigned int   s6_2;
	unsigned int   s7_2;
	unsigned int   s8_2;
	unsigned int   s9_2;
	unsigned int   s10_2;
	unsigned int   s11_2;
	unsigned int   s12_2;
	unsigned int   s13_2;
	unsigned int   s14_2;
	unsigned int   s15_2;

	/* Support register bank 3. */
	unsigned int   s0_3; /* BP_CTRL */
	unsigned int   s1_3; /* BP_I0_START */
	unsigned int   s2_3; /* BP_I0_END */
	unsigned int   s3_3; /* BP_D0_START */
	unsigned int   s4_3; /* BP_D0_END */
	unsigned int   s5_3; /* BP_D1_START */
	unsigned int   s6_3; /* BP_D1_END */
	unsigned int   s7_3; /* BP_D2_START */
	unsigned int   s8_3; /* BP_D2_END */
	unsigned int   s9_3; /* BP_D3_START */
	unsigned int   s10_3; /* BP_D3_END */
	unsigned int   s11_3; /* BP_D4_START */
	unsigned int   s12_3; /* BP_D4_END */
	unsigned int   s13_3; /* BP_D5_START */
	unsigned int   s14_3; /* BP_D5_END */
	unsigned int   s15_3; /* BP_RESERVED */

} support_registers;

enum register_name
{
	R0,  R1,  R2,  R3,
	R4,  R5,  R6,  R7,
	R8,  R9,  R10, R11,
	R12, R13, SP,  ACR,

	BZ,  VR,  PID, SRS,
	WZ,  EXS, EDA, MOF,
	DZ,  EBP, ERP, SRP,
	NRP, CCS, USP, SPC,
	PC,

	S0,  S1,  S2,  S3,
	S4,  S5,  S6,  S7,
	S8,  S9,  S10, S11,
	S12, S13, S14, S15

};

/* The register sizes of the registers in register_name. An unimplemented register
   is designated by size 0 in this array. */
static int register_size[] =
{
	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,

	1, 1, 4, 1,
	2, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,

	4,

	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4

};

/* Contains the register image of the kernel.
   (Global so that they can be reached from assembler code.) */
registers reg;
support_registers sreg;

/************** Prototypes for local library functions ***********************/

/* Copy of strcpy from libc. */
static char *gdb_cris_strcpy(char *s1, const char *s2);

/* Copy of strlen from libc. */
static int gdb_cris_strlen(const char *s);

/* Copy of memchr from libc. */
static void *gdb_cris_memchr(const void *s, int c, int n);

/* Copy of strtol from libc. Does only support base 16. */
static int gdb_cris_strtol(const char *s, char **endptr, int base);

/********************** Prototypes for local functions. **********************/

/* Write a value to a specified register regno in the register image
   of the current thread. */
static int write_register(int regno, char *val);

/* Read a value from a specified register in the register image. Returns the
   status of the read operation. The register value is returned in valptr. */
static int read_register(char regno, unsigned int *valptr);

/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
int getDebugChar(void);

#ifdef CONFIG_ETRAX_VCS_SIM
int getDebugChar(void)
{
  return socketread();
}
#endif

/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
void putDebugChar(int val);

#ifdef CONFIG_ETRAX_VCS_SIM
void putDebugChar(int val)
{
  socketwrite((char *)&val, 1);
}
#endif

/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
   represented by int x. */
static char highhex(int x);

/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
   represented by int x. */
static char lowhex(int x);

/* Returns the integer equivalent of a hexadecimal character. */
static int hex(char ch);

/* Convert the memory, pointed to by mem into hexadecimal representation.
   Put the result in buf, and return a pointer to the last character
   in buf (null). */
static char *mem2hex(char *buf, unsigned char *mem, int count);

/* Convert the array, in hexadecimal representation, pointed to by buf into
   binary representation. Put the result in mem, and return a pointer to
   the character after the last byte written. */
static unsigned char *hex2mem(unsigned char *mem, char *buf, int count);

/* Put the content of the array, in binary representation, pointed to by buf
   into memory pointed to by mem, and return a pointer to
   the character after the last byte written. */
static unsigned char *bin2mem(unsigned char *mem, unsigned char *buf, int count);

/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
   returned. */
static void getpacket(char *buffer);

/* Send $<data>#<checksum> from the <data> in the array buffer. */
static void putpacket(char *buffer);

/* Build and send a response packet in order to inform the host the
   stub is stopped. */
static void stub_is_stopped(int sigval);

/* All expected commands are sent from remote.c. Send a response according
   to the description in remote.c. Not static since it needs to be reached
   from assembler code. */
void handle_exception(int sigval);

/* Performs a complete re-start from scratch. ETRAX specific. */
static void kill_restart(void);

/******************** Prototypes for global functions. ***********************/

/* The string str is prepended with the GDB printout token and sent. */
void putDebugString(const unsigned char *str, int len);

/* A static breakpoint to be used at startup. */
void breakpoint(void);

/* Avoid warning as the internal_stack is not used in the C-code. */
#define USEDVAR(name)    { if (name) { ; } }
#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }

/********************************** Packet I/O ******************************/
/* BUFMAX defines the maximum number of characters in
   inbound/outbound buffers */
/* FIXME: How do we know it's enough? */
#define BUFMAX 512

/* Run-length encoding maximum length. Send 64 at most. */
#define RUNLENMAX 64

/* Definition of all valid hexadecimal characters */
static const char hexchars[] = "0123456789abcdef";

/* The inbound/outbound buffers used in packet I/O */
static char input_buffer[BUFMAX];
static char output_buffer[BUFMAX];

/* Error and warning messages. */
enum error_type
{
	SUCCESS, E01, E02, E03, E04, E05, E06,
};

static char *error_message[] =
{
	"",
	"E01 Set current or general thread - H[c,g] - internal error.",
	"E02 Change register content - P - cannot change read-only register.",
	"E03 Thread is not alive.", /* T, not used. */
	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
	"E05 Change register content - P - the register is not implemented..",
	"E06 Change memory content - M - internal error.",
};

/********************************** Breakpoint *******************************/
/* Use an internal stack in the breakpoint and interrupt response routines.
   FIXME: How do we know the size of this stack is enough?
   Global so it can be reached from assembler code. */
#define INTERNAL_STACK_SIZE 1024
char internal_stack[INTERNAL_STACK_SIZE];

/* Due to the breakpoint return pointer, a state variable is needed to keep
   track of whether it is a static (compiled) or dynamic (gdb-invoked)
   breakpoint to be handled. A static breakpoint uses the content of register
   ERP as it is whereas a dynamic breakpoint requires subtraction with 2
   in order to execute the instruction. The first breakpoint is static; all
   following are assumed to be dynamic. */
static int dynamic_bp = 0;

/********************************* String library ****************************/
/* Single-step over library functions creates trap loops. */

/* Copy char s2[] to s1[]. */
static char*
gdb_cris_strcpy(char *s1, const char *s2)
{
	char *s = s1;

	for (s = s1; (*s++ = *s2++) != '\0'; )
		;
	return s1;
}

/* Find length of s[]. */
static int
gdb_cris_strlen(const char *s)
{
	const char *sc;

	for (sc = s; *sc != '\0'; sc++)
		;
	return (sc - s);
}

/* Find first occurrence of c in s[n]. */
static void*
gdb_cris_memchr(const void *s, int c, int n)
{
	const unsigned char uc = c;
	const unsigned char *su;

	for (su = s; 0 < n; ++su, --n)
		if (*su == uc)
			return (void *)su;
	return NULL;
}
/******************************* Standard library ****************************/
/* Single-step over library functions creates trap loops. */
/* Convert string to long. */
static int
gdb_cris_strtol(const char *s, char **endptr, int base)
{
	char *s1;
	char *sd;
	int x = 0;

	for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1)
		x = x * base + (sd - hexchars);

        if (endptr) {
                /* Unconverted suffix is stored in endptr unless endptr is NULL. */
                *endptr = s1;
        }

	return x;
}

/********************************* Register image ****************************/

/* Write a value to a specified register in the register image of the current
   thread. Returns status code SUCCESS, E02 or E05. */
static int
write_register(int regno, char *val)
{
	int status = SUCCESS;

        if (regno >= R0 && regno <= ACR) {
		/* Consecutive 32-bit registers. */
		hex2mem((unsigned char *)&reg.r0 + (regno - R0) * sizeof(unsigned int),
			val, sizeof(unsigned int));

	} else if (regno == BZ || regno == VR || regno == WZ || regno == DZ) {
		/* Read-only registers. */
		status = E02;

	} else if (regno == PID) {
		/* 32-bit register. (Even though we already checked SRS and WZ, we cannot
		   combine this with the EXS - SPC write since SRS and WZ have different size.) */
		hex2mem((unsigned char *)&reg.pid, val, sizeof(unsigned int));

	} else if (regno == SRS) {
		/* 8-bit register. */
		hex2mem((unsigned char *)&reg.srs, val, sizeof(unsigned char));

	} else if (regno >= EXS && regno <= SPC) {
		/* Consecutive 32-bit registers. */
		hex2mem((unsigned char *)&reg.exs + (regno - EXS) * sizeof(unsigned int),
			 val, sizeof(unsigned int));

       } else if (regno == PC) {
               /* Pseudo-register. Treat as read-only. */
               status = E02;

       } else if (regno >= S0 && regno <= S15) {
               /* 32-bit registers. */
               hex2mem((unsigned char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int), val, sizeof(unsigned int));
	} else {
		/* Non-existing register. */
		status = E05;
	}
	return status;
}

/* Read a value from a specified register in the register image. Returns the
   value in the register or -1 for non-implemented registers. */
static int
read_register(char regno, unsigned int *valptr)
{
	int status = SUCCESS;

	/* We read the zero registers from the register struct (instead of just returning 0)
	   to catch errors. */

	if (regno >= R0 && regno <= ACR) {
		/* Consecutive 32-bit registers. */
		*valptr = *(unsigned int *)((char *)&reg.r0 + (regno - R0) * sizeof(unsigned int));

	} else if (regno == BZ || regno == VR) {
		/* Consecutive 8-bit registers. */
		*valptr = (unsigned int)(*(unsigned char *)
                                         ((char *)&reg.bz + (regno - BZ) * sizeof(char)));

	} else if (regno == PID) {
		/* 32-bit register. */
		*valptr =  *(unsigned int *)((char *)&reg.pid);

	} else if (regno == SRS) {
		/* 8-bit register. */
		*valptr = (unsigned int)(*(unsigned char *)((char *)&reg.srs));

	} else if (regno == WZ) {
		/* 16-bit register. */
		*valptr = (unsigned int)(*(unsigned short *)(char *)&reg.wz);

	} else if (regno >= EXS && regno <= PC) {
		/* Consecutive 32-bit registers. */
		*valptr = *(unsigned int *)((char *)&reg.exs + (regno - EXS) * sizeof(unsigned int));

	} else if (regno >= S0 && regno <= S15) {
		/* Consecutive 32-bit registers, located elsewhere. */
		*valptr = *(unsigned int *)((char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int));

	} else {
		/* Non-existing register. */
		status = E05;
	}
	return status;

}

/********************************** Packet I/O ******************************/
/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
   represented by int x. */
static inline char
highhex(int x)
{
	return hexchars[(x >> 4) & 0xf];
}

/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
   represented by int x. */
static inline char
lowhex(int x)
{
	return hexchars[x & 0xf];
}

/* Returns the integer equivalent of a hexadecimal character. */
static int
hex(char ch)
{
	if ((ch >= 'a') && (ch <= 'f'))
		return (ch - 'a' + 10);
	if ((ch >= '0') && (ch <= '9'))
		return (ch - '0');
	if ((ch >= 'A') && (ch <= 'F'))
		return (ch - 'A' + 10);
	return -1;
}

/* Convert the memory, pointed to by mem into hexadecimal representation.
   Put the result in buf, and return a pointer to the last character
   in buf (null). */

static char *
mem2hex(char *buf, unsigned char *mem, int count)
{
	int i;
	int ch;

        if (mem == NULL) {
		/* Invalid address, caught by 'm' packet handler. */
                for (i = 0; i < count; i++) {
                        *buf++ = '0';
                        *buf++ = '0';
                }
        } else {
                /* Valid mem address. */
		for (i = 0; i < count; i++) {
			ch = *mem++;
			*buf++ = highhex (ch);
			*buf++ = lowhex (ch);
		}
        }
        /* Terminate properly. */
	*buf = '\0';
	return buf;
}

/* Same as mem2hex, but puts it in network byte order. */
static char *
mem2hex_nbo(char *buf, unsigned char *mem, int count)
{
	int i;
	int ch;

	mem += count - 1;
	for (i = 0; i < count; i++) {
		ch = *mem--;
		*buf++ = highhex (ch);
		*buf++ = lowhex (ch);
        }

        /* Terminate properly. */
	*buf = '\0';
	return buf;
}

/* Convert the array, in hexadecimal representation, pointed to by buf into
   binary representation. Put the result in mem, and return a pointer to
   the character after the last byte written. */
static unsigned char*
hex2mem(unsigned char *mem, char *buf, int count)
{
	int i;
	unsigned char ch;
	for (i = 0; i < count; i++) {
		ch = hex (*buf++) << 4;
		ch = ch + hex (*buf++);
		*mem++ = ch;
	}
	return mem;
}

/* Put the content of the array, in binary representation, pointed to by buf
   into memory pointed to by mem, and return a pointer to the character after
   the last byte written.
   Gdb will escape $, #, and the escape char (0x7d). */
static unsigned char*
bin2mem(unsigned char *mem, unsigned char *buf, int count)
{
	int i;
	unsigned char *next;
	for (i = 0; i < count; i++) {
		/* Check for any escaped characters. Be paranoid and
		   only unescape chars that should be escaped. */
		if (*buf == 0x7d) {
			next = buf + 1;
			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) {
				 /* #, $, ESC */
				buf++;
				*buf += 0x20;
			}
		}
		*mem++ = *buf++;
	}
	return mem;
}

/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
   returned. */
static void
getpacket(char *buffer)
{
	unsigned char checksum;
	unsigned char xmitcsum;
	int i;
	int count;
	char ch;

	do {
		while((ch = getDebugChar ()) != '$')
			/* Wait for the start character $ and ignore all other characters */;
		checksum = 0;
		xmitcsum = -1;
		count = 0;
		/* Read until a # or the end of the buffer is reached */
		while (count < BUFMAX) {
			ch = getDebugChar();
			if (ch == '#')
				break;
			checksum = checksum + ch;
			buffer[count] = ch;
			count = count + 1;
		}

		if (count >= BUFMAX)
			continue;

		buffer[count] = 0;

		if (ch == '#') {
			xmitcsum = hex(getDebugChar()) << 4;
			xmitcsum += hex(getDebugChar());
			if (checksum != xmitcsum) {
				/* Wrong checksum */
				putDebugChar('-');
			} else {
				/* Correct checksum */
				putDebugChar('+');
				/* If sequence characters are received, reply with them */
				if (buffer[2] == ':') {
					putDebugChar(buffer[0]);
					putDebugChar(buffer[1]);
					/* Remove the sequence characters from the buffer */
					count = gdb_cris_strlen(buffer);
					for (i = 3; i <= count; i++)
						buffer[i - 3] = buffer[i];
				}
			}
		}
	} while (checksum != xmitcsum);
}

/* Send $<data>#<checksum> from the <data> in the array buffer. */

static void
putpacket(char *buffer)
{
	int checksum;
	int runlen;
	int encode;

	do {
		char *src = buffer;
		putDebugChar('$');
		checksum = 0;
		while (*src) {
			/* Do run length encoding */
			putDebugChar(*src);
			checksum += *src;
			runlen = 0;
			while (runlen < RUNLENMAX && *src == src[runlen]) {
				runlen++;
			}
			if (runlen > 3) {
				/* Got a useful amount */
				putDebugChar ('*');
				checksum += '*';
				encode = runlen + ' ' - 4;
				putDebugChar(encode);
				checksum += encode;
				src += runlen;
			} else {
				src++;
			}
		}
		putDebugChar('#');
		putDebugChar(highhex (checksum));
		putDebugChar(lowhex (checksum));
	} while(kgdb_started && (getDebugChar() != '+'));
}

/* The string str is prepended with the GDB printout token and sent. Required
   in traditional implementations. */
void
putDebugString(const unsigned char *str, int len)
{
	/* Move SPC forward if we are single-stepping. */
	asm("spchere:");
	asm("move $spc, $r10");
	asm("cmp.d spchere, $r10");
	asm("bne nosstep");
	asm("nop");
	asm("move.d spccont, $r10");
	asm("move $r10, $spc");
	asm("nosstep:");

        output_buffer[0] = 'O';
        mem2hex(&output_buffer[1], (unsigned char *)str, len);
        putpacket(output_buffer);

	asm("spccont:");
}

/********************************** Handle exceptions ************************/
/* Build and send a response packet in order to inform the host the
   stub is stopped. TAAn...:r...;n...:r...;n...:r...;
                    AA = signal number
                    n... = register number (hex)
                    r... = register contents
                    n... = `thread'
                    r... = thread process ID.  This is a hex integer.
                    n... = other string not starting with valid hex digit.
                    gdb should ignore this n,r pair and go on to the next.
                    This way we can extend the protocol. */
static void
stub_is_stopped(int sigval)
{
	char *ptr = output_buffer;
	unsigned int reg_cont;

	/* Send trap type (converted to signal) */

	*ptr++ = 'T';
	*ptr++ = highhex(sigval);
	*ptr++ = lowhex(sigval);

	if (((reg.exs & 0xff00) >> 8) == 0xc) {

		/* Some kind of hardware watchpoint triggered. Find which one
		   and determine its type (read/write/access).  */
		int S, bp, trig_bits = 0, rw_bits = 0;
		int trig_mask = 0;
		unsigned int *bp_d_regs = &sreg.s3_3;
		/* In a lot of cases, the stopped data address will simply be EDA.
		   In some cases, we adjust it to match the watched data range.
		   (We don't want to change the actual EDA though). */
		unsigned int stopped_data_address;
		/* The S field of EXS. */
		S = (reg.exs & 0xffff0000) >> 16;

		if (S & 1) {
			/* Instruction watchpoint. */
			/* FIXME: Check against, and possibly adjust reported EDA. */
		} else {
			/* Data watchpoint.  Find the one that triggered. */
			for (bp = 0; bp < 6; bp++) {

				/* Dx_RD, Dx_WR in the S field of EXS for this BP. */
				int bitpos_trig = 1 + bp * 2;
				/* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */
				int bitpos_config = 2 + bp * 4;

				/* Get read/write trig bits for this BP. */
				trig_bits = (S & (3 << bitpos_trig)) >> bitpos_trig;

				/* Read/write config bits for this BP. */
				rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config;
				if (trig_bits) {
					/* Sanity check: the BP shouldn't trigger for accesses
					   that it isn't configured for. */
					if ((rw_bits == 0x1 && trig_bits != 0x1) ||
					    (rw_bits == 0x2 && trig_bits != 0x2))
						panic("Invalid r/w trigging for this BP");

					/* Mark this BP as trigged for future reference. */
					trig_mask |= (1 << bp);

					if (reg.eda >= bp_d_regs[bp * 2] &&
					    reg.eda <= bp_d_regs[bp * 2 + 1]) {
						/* EDA withing range for this BP; it must be the one
						   we're looking for. */
						stopped_data_address = reg.eda;
						break;
					}
				}
			}
			if (bp < 6) {
				/* Found a trigged BP with EDA within its configured data range. */
			} else if (trig_mask) {
				/* Something triggered, but EDA doesn't match any BP's range. */
				for (bp = 0; bp < 6; bp++) {
					/* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */
					int bitpos_config = 2 + bp * 4;

					/* Read/write config bits for this BP (needed later). */
					rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config;

					if (trig_mask & (1 << bp)) {
						/* EDA within 31 bytes of the configured start address? */
						if (reg.eda + 31 >= bp_d_regs[bp * 2]) {
							/* Changing the reported address to match
							   the start address of the first applicable BP. */
							stopped_data_address = bp_d_regs[bp * 2];
							break;
						} else {
							/* We continue since we might find another useful BP. */
							printk("EDA doesn't match trigged BP's range");
						}
					}
				}
			}

			/* No match yet? */
			BUG_ON(bp >= 6);
			/* Note that we report the type according to what the BP is configured
			   for (otherwise we'd never report an 'awatch'), not according to how
			   it trigged. We did check that the trigged bits match what the BP is
			   configured for though. */
			if (rw_bits == 0x1) {
				/* read */
				strncpy(ptr, "rwatch", 6);
				ptr += 6;
			} else if (rw_bits == 0x2) {
				/* write */
				strncpy(ptr, "watch", 5);
				ptr += 5;
			} else if (rw_bits == 0x3) {
				/* access */
				strncpy(ptr, "awatch", 6);
				ptr += 6;
			} else {
				panic("Invalid r/w bits for this BP.");
			}

			*ptr++ = ':';
			/* Note that we don't read_register(EDA, ...) */
			ptr = mem2hex_nbo(ptr, (unsigned char *)&stopped_data_address, register_size[EDA]);
			*ptr++ = ';';
		}
	}
	/* Only send PC, frame and stack pointer. */
	read_register(PC, &reg_cont);
	*ptr++ = highhex(PC);
	*ptr++ = lowhex(PC);
	*ptr++ = ':';
	ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[PC]);
	*ptr++ = ';';

	read_register(R8, &reg_cont);
	*ptr++ = highhex(R8);
	*ptr++ = lowhex(R8);
	*ptr++ = ':';
	ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[R8]);
	*ptr++ = ';';

	read_register(SP, &reg_cont);
	*ptr++ = highhex(SP);
	*ptr++ = lowhex(SP);
	*ptr++ = ':';
	ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[SP]);
	*ptr++ = ';';

	/* Send ERP as well; this will save us an entire register fetch in some cases. */
        read_register(ERP, &reg_cont);
        *ptr++ = highhex(ERP);
        *ptr++ = lowhex(ERP);
        *ptr++ = ':';
        ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[ERP]);
        *ptr++ = ';';

	/* null-terminate and send it off */
	*ptr = 0;
	putpacket(output_buffer);
}

/* Returns the size of an instruction that has a delay slot. */

int insn_size(unsigned long pc)
{
	unsigned short opcode = *(unsigned short *)pc;
	int size = 0;

	switch ((opcode & 0x0f00) >> 8) {
	case 0x0:
	case 0x9:
	case 0xb:
		size = 2;
		break;
	case 0xe:
	case 0xf:
		size = 6;
		break;
	case 0xd:
		/* Could be 4 or 6; check more bits. */
		if ((opcode & 0xff) == 0xff)
			size = 4;
		else
			size = 6;
		break;
	default:
		panic("Couldn't find size of opcode 0x%x at 0x%lx\n", opcode, pc);
	}

	return size;
}

void register_fixup(int sigval)
{
	/* Compensate for ACR push at the beginning of exception handler. */
	reg.sp += 4;

	/* Standard case. */
	reg.pc = reg.erp;
	if (reg.erp & 0x1) {
		/* Delay slot bit set.  Report as stopped on proper instruction.  */
		if (reg.spc) {
			/* Rely on SPC if set. */
			reg.pc = reg.spc;
		} else {
			/* Calculate the PC from the size of the instruction
			   that the delay slot we're in belongs to. */
			reg.pc += insn_size(reg.erp & ~1) - 1 ;
		}
	}

	if ((reg.exs & 0x3) == 0x0) {
		/* Bits 1 - 0 indicate the type of memory operation performed
		   by the interrupted instruction. 0 means no memory operation,
		   and EDA is undefined in that case. We zero it to avoid confusion. */
		reg.eda = 0;
	}

	if (sigval == SIGTRAP) {
		/* Break 8, single step or hardware breakpoint exception. */

		/* Check IDX field of EXS. */
		if (((reg.exs & 0xff00) >> 8) == 0x18) {

			/* Break 8. */

                        /* Static (compiled) breakpoints must return to the next instruction
			   in order to avoid infinite loops (default value of ERP). Dynamic
			   (gdb-invoked) must subtract the size of the break instruction from
			   the ERP so that the instruction that was originally in the break
			   instruction's place will be run when we return from the exception. */
			if (!dynamic_bp) {
				/* Assuming that all breakpoints are dynamic from now on. */
				dynamic_bp = 1;
			} else {

				/* Only if not in a delay slot. */
				if (!(reg.erp & 0x1)) {
					reg.erp -= 2;
					reg.pc -= 2;
				}
			}

		} else if (((reg.exs & 0xff00) >> 8) == 0x3) {
			/* Single step. */
			/* Don't fiddle with S1. */

		} else if (((reg.exs & 0xff00) >> 8) == 0xc) {

			/* Hardware watchpoint exception. */

			/* SPC has been updated so that we will get a single step exception
			   when we return, but we don't want that. */
			reg.spc = 0;

			/* Don't fiddle with S1. */
		}

	} else if (sigval == SIGINT) {
		/* Nothing special. */
	}
}

static void insert_watchpoint(char type, int addr, int len)
{
	/* Breakpoint/watchpoint types (GDB terminology):
	   0 = memory breakpoint for instructions
	   (not supported; done via memory write instead)
	   1 = hardware breakpoint for instructions (supported)
	   2 = write watchpoint (supported)
	   3 = read watchpoint (supported)
	   4 = access watchpoint (supported) */

	if (type < '1' || type > '4') {
		output_buffer[0] = 0;
		return;
	}

	/* Read watchpoints are set as access watchpoints, because of GDB's
	   inability to deal with pure read watchpoints. */
	if (type == '3')
		type = '4';

	if (type == '1') {
		/* Hardware (instruction) breakpoint. */
		/* Bit 0 in BP_CTRL holds the configuration for I0. */
		if (sreg.s0_3 & 0x1) {
			/* Already in use. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}
		/* Configure. */
		sreg.s1_3 = addr;
		sreg.s2_3 = (addr + len - 1);
		sreg.s0_3 |= 1;
	} else {
		int bp;
		unsigned int *bp_d_regs = &sreg.s3_3;

		/* The watchpoint allocation scheme is the simplest possible.
		   For example, if a region is watched for read and
		   a write watch is requested, a new watchpoint will
		   be used. Also, if a watch for a region that is already
		   covered by one or more existing watchpoints, a new
		   watchpoint will be used. */

		/* First, find a free data watchpoint. */
		for (bp = 0; bp < 6; bp++) {
			/* Each data watchpoint's control registers occupy 2 bits
			   (hence the 3), starting at bit 2 for D0 (hence the 2)
			   with 4 bits between for each watchpoint (yes, the 4). */
			if (!(sreg.s0_3 & (0x3 << (2 + (bp * 4))))) {
				break;
			}
		}

		if (bp > 5) {
			/* We're out of watchpoints. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}

		/* Configure the control register first. */
		if (type == '3' || type == '4') {
			/* Trigger on read. */
			sreg.s0_3 |= (1 << (2 + bp * 4));
		}
		if (type == '2' || type == '4') {
			/* Trigger on write. */
			sreg.s0_3 |= (2 << (2 + bp * 4));
		}

		/* Ugly pointer arithmetics to configure the watched range. */
		bp_d_regs[bp * 2] = addr;
		bp_d_regs[bp * 2 + 1] = (addr + len - 1);
	}

	/* Set the S1 flag to enable watchpoints. */
	reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT));
	gdb_cris_strcpy(output_buffer, "OK");
}

static void remove_watchpoint(char type, int addr, int len)
{
	/* Breakpoint/watchpoint types:
	   0 = memory breakpoint for instructions
	   (not supported; done via memory write instead)
	   1 = hardware breakpoint for instructions (supported)
	   2 = write watchpoint (supported)
	   3 = read watchpoint (supported)
	   4 = access watchpoint (supported) */
	if (type < '1' || type > '4') {
		output_buffer[0] = 0;
		return;
	}

	/* Read watchpoints are set as access watchpoints, because of GDB's
	   inability to deal with pure read watchpoints. */
	if (type == '3')
		type = '4';

	if (type == '1') {
		/* Hardware breakpoint. */
		/* Bit 0 in BP_CTRL holds the configuration for I0. */
		if (!(sreg.s0_3 & 0x1)) {
			/* Not in use. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}
		/* Deconfigure. */
		sreg.s1_3 = 0;
		sreg.s2_3 = 0;
		sreg.s0_3 &= ~1;
	} else {
		int bp;
		unsigned int *bp_d_regs = &sreg.s3_3;
		/* Try to find a watchpoint that is configured for the
		   specified range, then check that read/write also matches. */

		/* Ugly pointer arithmetic, since I cannot rely on a
		   single switch (addr) as there may be several watchpoints with
		   the same start address for example. */

		for (bp = 0; bp < 6; bp++) {
			if (bp_d_regs[bp * 2] == addr &&
			    bp_d_regs[bp * 2 + 1] == (addr + len - 1)) {
				/* Matching range. */
				int bitpos = 2 + bp * 4;
				int rw_bits;

				/* Read/write bits for this BP. */
				rw_bits = (sreg.s0_3 & (0x3 << bitpos)) >> bitpos;

				if ((type == '3' && rw_bits == 0x1) ||
				    (type == '2' && rw_bits == 0x2) ||
				    (type == '4' && rw_bits == 0x3)) {
					/* Read/write matched. */
					break;
				}
			}
		}

		if (bp > 5) {
			/* No watchpoint matched. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}

		/* Found a matching watchpoint. Now, deconfigure it by
		   both disabling read/write in bp_ctrl and zeroing its
		   start/end addresses. */
		sreg.s0_3 &= ~(3 << (2 + (bp * 4)));
		bp_d_regs[bp * 2] = 0;
		bp_d_regs[bp * 2 + 1] = 0;
	}

	/* Note that we don't clear the S1 flag here. It's done when continuing.  */
	gdb_cris_strcpy(output_buffer, "OK");
}



/* All expected commands are sent from remote.c. Send a response according
   to the description in remote.c. */
void
handle_exception(int sigval)
{
	/* Avoid warning of not used. */

	USEDFUN(handle_exception);
	USEDVAR(internal_stack[0]);

	register_fixup(sigval);

	/* Send response. */
	stub_is_stopped(sigval);

	for (;;) {
		output_buffer[0] = '\0';
		getpacket(input_buffer);
		switch (input_buffer[0]) {
			case 'g':
				/* Read registers: g
				   Success: Each byte of register data is described by two hex digits.
				   Registers are in the internal order for GDB, and the bytes
				   in a register  are in the same order the machine uses.
				   Failure: void. */
			{
				char *buf;
				/* General and special registers. */
				buf = mem2hex(output_buffer, (char *)&reg, sizeof(registers));
				/* Support registers. */
				/* -1 because of the null termination that mem2hex adds. */
				mem2hex(buf,
					(char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)),
					16 * sizeof(unsigned int));
				break;
			}
			case 'G':
				/* Write registers. GXX..XX
				   Each byte of register data  is described by two hex digits.
				   Success: OK
				   Failure: void. */
				/* General and special registers. */
				hex2mem((char *)&reg, &input_buffer[1], sizeof(registers));
				/* Support registers. */
				hex2mem((char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)),
					&input_buffer[1] + sizeof(registers),
					16 * sizeof(unsigned int));
				gdb_cris_strcpy(output_buffer, "OK");
				break;

			case 'P':
				/* Write register. Pn...=r...
				   Write register n..., hex value without 0x, with value r...,
				   which contains a hex value without 0x and two hex digits
				   for each byte in the register (target byte order). P1f=11223344 means
				   set register 31 to 44332211.
				   Success: OK
				   Failure: E02, E05 */
				{
					char *suffix;
					int regno = gdb_cris_strtol(&input_buffer[1], &suffix, 16);
					int status;

					status = write_register(regno, suffix+1);

					switch (status) {
						case E02:
							/* Do not support read-only registers. */
							gdb_cris_strcpy(output_buffer, error_message[E02]);
							break;
						case E05:
							/* Do not support non-existing registers. */
							gdb_cris_strcpy(output_buffer, error_message[E05]);
							break;
						default:
							/* Valid register number. */
							gdb_cris_strcpy(output_buffer, "OK");
							break;
					}
				}
				break;

			case 'm':
				/* Read from memory. mAA..AA,LLLL
				   AA..AA is the address and LLLL is the length.
				   Success: XX..XX is the memory content.  Can be fewer bytes than
				   requested if only part of the data may be read. m6000120a,6c means
				   retrieve 108 byte from base address 6000120a.
				   Failure: void. */
				{
                                        char *suffix;
					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1],
                                                                                               &suffix, 16);
					int len = gdb_cris_strtol(suffix+1, 0, 16);

					/* Bogus read (i.e. outside the kernel's
					   segment)? . */
					if (!((unsigned int)addr >= 0xc0000000 &&
					      (unsigned int)addr < 0xd0000000))
						addr = NULL;

                                        mem2hex(output_buffer, addr, len);
                                }
				break;

			case 'X':
				/* Write to memory. XAA..AA,LLLL:XX..XX
				   AA..AA is the start address,  LLLL is the number of bytes, and
				   XX..XX is the binary data.
				   Success: OK
				   Failure: void. */
			case 'M':
				/* Write to memory. MAA..AA,LLLL:XX..XX
				   AA..AA is the start address,  LLLL is the number of bytes, and
				   XX..XX is the hexadecimal data.
				   Success: OK
				   Failure: void. */
				{
					char *lenptr;
					char *dataptr;
					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1],
										      &lenptr, 16);
					int len = gdb_cris_strtol(lenptr+1, &dataptr, 16);
					if (*lenptr == ',' && *dataptr == ':') {
						if (input_buffer[0] == 'M') {
							hex2mem(addr, dataptr + 1, len);
						} else /* X */ {
							bin2mem(addr, dataptr + 1, len);
						}
						gdb_cris_strcpy(output_buffer, "OK");
					}
					else {
						gdb_cris_strcpy(output_buffer, error_message[E06]);
					}
				}
				break;

			case 'c':
				/* Continue execution. cAA..AA
				   AA..AA is the address where execution is resumed. If AA..AA is
				   omitted, resume at the present address.
				   Success: return to the executing thread.
				   Failure: will never know. */

				if (input_buffer[1] != '\0') {
					/* FIXME: Doesn't handle address argument. */
					gdb_cris_strcpy(output_buffer, error_message[E04]);
					break;
				}

				/* Before continuing, make sure everything is set up correctly. */

				/* Set the SPC to some unlikely value.  */
				reg.spc = 0;
				/* Set the S1 flag to 0 unless some watchpoint is enabled (since setting
				   S1 to 0 would also disable watchpoints). (Note that bits 26-31 in BP_CTRL
				   are reserved, so don't check against those). */
				if ((sreg.s0_3 & 0x3fff) == 0) {
					reg.ccs &= ~(1 << (S_CCS_BITNR + CCS_SHIFT));
				}

				return;

			case 's':
				/* Step. sAA..AA
				   AA..AA is the address where execution is resumed. If AA..AA is
				   omitted, resume at the present address. Success: return to the
				   executing thread. Failure: will never know. */

				if (input_buffer[1] != '\0') {
					/* FIXME: Doesn't handle address argument. */
					gdb_cris_strcpy(output_buffer, error_message[E04]);
					break;
				}

				/* Set the SPC to PC, which is where we'll return
				   (deduced previously). */
				reg.spc = reg.pc;

				/* Set the S1 (first stacked, not current) flag, which will
				   kick into action when we rfe. */
				reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT));
				return;

                       case 'Z':

                               /* Insert breakpoint or watchpoint, Ztype,addr,length.
                                  Remote protocol says: A remote target shall return an empty string
                                  for an unrecognized breakpoint or watchpoint packet type. */
                               {
                                       char *lenptr;
                                       char *dataptr;
                                       int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16);
                                       int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16);
                                       char type = input_buffer[1];

				       insert_watchpoint(type, addr, len);
                                       break;
                               }

                       case 'z':
                               /* Remove breakpoint or watchpoint, Ztype,addr,length.
                                  Remote protocol says: A remote target shall return an empty string
                                  for an unrecognized breakpoint or watchpoint packet type. */
                               {
                                       char *lenptr;
                                       char *dataptr;
                                       int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16);
                                       int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16);
                                       char type = input_buffer[1];

                                       remove_watchpoint(type, addr, len);
                                       break;
                               }


			case '?':
				/* The last signal which caused a stop. ?
				   Success: SAA, where AA is the signal number.
				   Failure: void. */
				output_buffer[0] = 'S';
				output_buffer[1] = highhex(sigval);
				output_buffer[2] = lowhex(sigval);
				output_buffer[3] = 0;
				break;

			case 'D':
				/* Detach from host. D
				   Success: OK, and return to the executing thread.
				   Failure: will never know */
				putpacket("OK");
				return;

			case 'k':
			case 'r':
				/* kill request or reset request.
				   Success: restart of target.
				   Failure: will never know. */
				kill_restart();
				break;

			case 'C':
			case 'S':
			case '!':
			case 'R':
			case 'd':
				/* Continue with signal sig. Csig;AA..AA
				   Step with signal sig. Ssig;AA..AA
				   Use the extended remote protocol. !
				   Restart the target system. R0
				   Toggle debug flag. d
				   Search backwards. tAA:PP,MM
				   Not supported: E04 */

				/* FIXME: What's the difference between not supported
				   and ignored (below)? */
				gdb_cris_strcpy(output_buffer, error_message[E04]);
				break;

			default:
				/* The stub should ignore other request and send an empty
				   response ($#<checksum>). This way we can extend the protocol and GDB
				   can tell whether the stub it is talking to uses the old or the new. */
				output_buffer[0] = 0;
				break;
		}
		putpacket(output_buffer);
	}
}

void
kgdb_init(void)
{
	reg_intr_vect_rw_mask intr_mask;
	reg_ser_rw_intr_mask ser_intr_mask;

	/* Configure the kgdb serial port. */
#if defined(CONFIG_ETRAX_KGDB_PORT0)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER0_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser0 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser0, rw_intr_mask);
	ser_intr_mask.dav = regk_ser_yes;
	REG_WR(ser, regi_ser0, rw_intr_mask, ser_intr_mask);
#elif defined(CONFIG_ETRAX_KGDB_PORT1)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER1_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser1 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser1, rw_intr_mask);
	ser_intr_mask.dav = regk_ser_yes;
	REG_WR(ser, regi_ser1, rw_intr_mask, ser_intr_mask);
#elif defined(CONFIG_ETRAX_KGDB_PORT2)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER2_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser2 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser2, rw_intr_mask);
	ser_intr_mask.dav = regk_ser_yes;
	REG_WR(ser, regi_ser2, rw_intr_mask, ser_intr_mask);
#elif defined(CONFIG_ETRAX_KGDB_PORT3)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER3_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser3 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser3, rw_intr_mask);
	ser_intr_mask.dav = regk_ser_yes;
	REG_WR(ser, regi_ser3, rw_intr_mask, ser_intr_mask);
#endif

}
/* Performs a complete re-start from scratch. */
static void
kill_restart(void)
{
	machine_restart("");
}

/* Use this static breakpoint in the start-up only. */

void
breakpoint(void)
{
	kgdb_started = 1;
	dynamic_bp = 0;     /* This is a static, not a dynamic breakpoint. */
	__asm__ volatile ("break 8"); /* Jump to kgdb_handle_breakpoint. */
}

/****************************** End of file **********************************/