summaryrefslogtreecommitdiff
path: root/arch/cris/arch-v32/kernel/arbiter.c
blob: 82d44c9afc1ecc2c8049606b6bdca175b324cc74 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * Memory arbiter functions. Allocates bandwidth through the
 * arbiter and sets up arbiter breakpoints.
 *
 * The algorithm first assigns slots to the clients that has specified
 * bandwidth (e.g. ethernet) and then the remaining slots are divided
 * on all the active clients.
 *
 * Copyright (c) 2004, 2005 Axis Communications AB.
 */

#include <asm/arch/hwregs/reg_map.h>
#include <asm/arch/hwregs/reg_rdwr.h>
#include <asm/arch/hwregs/marb_defs.h>
#include <asm/arch/arbiter.h>
#include <asm/arch/hwregs/intr_vect.h>
#include <linux/interrupt.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <asm/io.h>

struct crisv32_watch_entry
{
  unsigned long instance;
  watch_callback* cb;
  unsigned long start;
  unsigned long end;
  int used;
};

#define NUMBER_OF_BP 4
#define NBR_OF_CLIENTS 14
#define NBR_OF_SLOTS 64
#define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
#define INTMEM_BANDWIDTH 400000000
#define NBR_OF_REGIONS 2

static struct crisv32_watch_entry watches[NUMBER_OF_BP] =
{
  {regi_marb_bp0},
  {regi_marb_bp1},
  {regi_marb_bp2},
  {regi_marb_bp3}
};

static int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
static int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};

DEFINE_SPINLOCK(arbiter_lock);

static irqreturn_t
crisv32_arbiter_irq(int irq, void* dev_id, struct pt_regs* regs);

static void crisv32_arbiter_config(int region)
{
	int slot;
	int client;
	int interval = 0;
	int val[NBR_OF_SLOTS];

	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
	    val[slot] = NBR_OF_CLIENTS + 1;

	for (client = 0; client < NBR_OF_CLIENTS; client++)
	{
	    int pos;
	    if (!requested_slots[region][client])
	       continue;
	    interval = NBR_OF_SLOTS / requested_slots[region][client];
	    pos = 0;
	    while (pos < NBR_OF_SLOTS)
	    {
		if (val[pos] != NBR_OF_CLIENTS + 1)
		   pos++;
		else
		{
			val[pos] = client;
			pos += interval;
		}
	    }
	}

	client = 0;
	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
	{
		if (val[slot] == NBR_OF_CLIENTS + 1)
		{
			int first = client;
			while(!active_clients[region][client]) {
				client = (client + 1) % NBR_OF_CLIENTS;
				if (client == first)
				   break;
			}
			val[slot] = client;
			client = (client + 1) % NBR_OF_CLIENTS;
		}
		if (region == EXT_REGION)
		   REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot, val[slot]);
		else if (region == INT_REGION)
		   REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot, val[slot]);
	}
}

extern char _stext, _etext;

static void crisv32_arbiter_init(void)
{
	static int initialized = 0;

	if (initialized)
		return;

	initialized = 1;

	/* CPU caches are active. */
	active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
        crisv32_arbiter_config(EXT_REGION);
        crisv32_arbiter_config(INT_REGION);

	if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, SA_INTERRUPT,
                        "arbiter", NULL))
		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");

#ifndef CONFIG_ETRAX_KGDB
        /* Global watch for writes to kernel text segment. */
        crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
                              arbiter_all_clients, arbiter_all_write, NULL);
#endif
}



int crisv32_arbiter_allocate_bandwidth(int client, int region,
				       unsigned long bandwidth)
{
	int i;
	int total_assigned = 0;
	int total_clients = 0;
	int req;

	crisv32_arbiter_init();

	for (i = 0; i < NBR_OF_CLIENTS; i++)
	{
		total_assigned += requested_slots[region][i];
		total_clients += active_clients[region][i];
	}
	req = NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);

	if (total_assigned + total_clients + req + 1 > NBR_OF_SLOTS)
	   return -ENOMEM;

	active_clients[region][client] = 1;
	requested_slots[region][client] = req;
	crisv32_arbiter_config(region);

	return 0;
}

int crisv32_arbiter_watch(unsigned long start, unsigned long size,
                          unsigned long clients, unsigned long accesses,
                          watch_callback* cb)
{
	int i;

	crisv32_arbiter_init();

	if (start > 0x80000000) {
		printk("Arbiter: %lX doesn't look like a physical address", start);
		return -EFAULT;
	}

	spin_lock(&arbiter_lock);

	for (i = 0; i < NUMBER_OF_BP; i++) {
		if (!watches[i].used) {
			reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);

			watches[i].used = 1;
			watches[i].start = start;
			watches[i].end = start + size;
			watches[i].cb = cb;

			REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr, watches[i].start);
			REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr, watches[i].end);
			REG_WR_INT(marb_bp, watches[i].instance, rw_op, accesses);
			REG_WR_INT(marb_bp, watches[i].instance, rw_clients, clients);

			if (i == 0)
				intr_mask.bp0 = regk_marb_yes;
			else if (i == 1)
				intr_mask.bp1 = regk_marb_yes;
			else if (i == 2)
				intr_mask.bp2 = regk_marb_yes;
			else if (i == 3)
				intr_mask.bp3 = regk_marb_yes;

			REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
			spin_unlock(&arbiter_lock);

			return i;
		}
	}
	spin_unlock(&arbiter_lock);
	return -ENOMEM;
}

int crisv32_arbiter_unwatch(int id)
{
	reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);

	crisv32_arbiter_init();

	spin_lock(&arbiter_lock);

	if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
		spin_unlock(&arbiter_lock);
		return -EINVAL;
	}

	memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));

	if (id == 0)
		intr_mask.bp0 = regk_marb_no;
	else if (id == 1)
		intr_mask.bp2 = regk_marb_no;
	else if (id == 2)
		intr_mask.bp2 = regk_marb_no;
	else if (id == 3)
		intr_mask.bp3 = regk_marb_no;

	REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);

	spin_unlock(&arbiter_lock);
	return 0;
}

extern void show_registers(struct pt_regs *regs);

static irqreturn_t
crisv32_arbiter_irq(int irq, void* dev_id, struct pt_regs* regs)
{
	reg_marb_r_masked_intr masked_intr = REG_RD(marb, regi_marb, r_masked_intr);
	reg_marb_bp_r_brk_clients r_clients;
	reg_marb_bp_r_brk_addr r_addr;
	reg_marb_bp_r_brk_op r_op;
	reg_marb_bp_r_brk_first_client r_first;
	reg_marb_bp_r_brk_size r_size;
	reg_marb_bp_rw_ack ack = {0};
	reg_marb_rw_ack_intr ack_intr = {.bp0=1,.bp1=1,.bp2=1,.bp3=1};
	struct crisv32_watch_entry* watch;

	if (masked_intr.bp0) {
		watch = &watches[0];
		ack_intr.bp0 = regk_marb_yes;
	} else if (masked_intr.bp1) {
		watch = &watches[1];
		ack_intr.bp1 = regk_marb_yes;
	} else if (masked_intr.bp2) {
		watch = &watches[2];
		ack_intr.bp2 = regk_marb_yes;
	} else if (masked_intr.bp3) {
		watch = &watches[3];
		ack_intr.bp3 = regk_marb_yes;
	} else {
		return IRQ_NONE;
	}

	/* Retrieve all useful information and print it. */
	r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
	r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
	r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
	r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
	r_size = REG_RD(marb_bp, watch->instance, r_brk_size);

	printk("Arbiter IRQ\n");
	printk("Clients %X addr %X op %X first %X size %X\n",
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));

	REG_WR(marb_bp, watch->instance, rw_ack, ack);
	REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);

	printk("IRQ occured at %lX\n", regs->erp);

	if (watch->cb)
		watch->cb();


	return IRQ_HANDLED;
}