summaryrefslogtreecommitdiff
path: root/arch/arm64/mm/cache.S
blob: 1ea9f26d1b703585537d82cf30aa44ddbe879917 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
 * Cache maintenance
 *
 * Copyright (C) 2001 Deep Blue Solutions Ltd.
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/linkage.h>
#include <linux/init.h>
#include <asm/assembler.h>

#include "proc-macros.S"

/*
 *	__flush_dcache_all()
 *
 *	Flush the whole D-cache.
 *
 *	Corrupted registers: x0-x7, x9-x11
 */
ENTRY(__flush_dcache_all)
	dsb	sy				// ensure ordering with previous memory accesses
	mrs	x0, clidr_el1			// read clidr
	and	x3, x0, #0x7000000		// extract loc from clidr
	lsr	x3, x3, #23			// left align loc bit field
	cbz	x3, finished			// if loc is 0, then no need to clean
	mov	x10, #0				// start clean at cache level 0
loop1:
	add	x2, x10, x10, lsr #1		// work out 3x current cache level
	lsr	x1, x0, x2			// extract cache type bits from clidr
	and	x1, x1, #7			// mask of the bits for current cache only
	cmp	x1, #2				// see what cache we have at this level
	b.lt	skip				// skip if no cache, or just i-cache
	save_and_disable_irqs x9		// make CSSELR and CCSIDR access atomic
	msr	csselr_el1, x10			// select current cache level in csselr
	isb					// isb to sych the new cssr&csidr
	mrs	x1, ccsidr_el1			// read the new ccsidr
	restore_irqs x9
	and	x2, x1, #7			// extract the length of the cache lines
	add	x2, x2, #4			// add 4 (line length offset)
	mov	x4, #0x3ff
	and	x4, x4, x1, lsr #3		// find maximum number on the way size
	clz	w5, w4				// find bit position of way size increment
	mov	x7, #0x7fff
	and	x7, x7, x1, lsr #13		// extract max number of the index size
loop2:
	mov	x9, x4				// create working copy of max way size
loop3:
	lsl	x6, x9, x5
	orr	x11, x10, x6			// factor way and cache number into x11
	lsl	x6, x7, x2
	orr	x11, x11, x6			// factor index number into x11
	dc	cisw, x11			// clean & invalidate by set/way
	subs	x9, x9, #1			// decrement the way
	b.ge	loop3
	subs	x7, x7, #1			// decrement the index
	b.ge	loop2
skip:
	add	x10, x10, #2			// increment cache number
	cmp	x3, x10
	b.gt	loop1
finished:
	mov	x10, #0				// swith back to cache level 0
	msr	csselr_el1, x10			// select current cache level in csselr
	dsb	sy
	isb
	ret
ENDPROC(__flush_dcache_all)

/*
 *	flush_cache_all()
 *
 *	Flush the entire cache system.  The data cache flush is now achieved
 *	using atomic clean / invalidates working outwards from L1 cache. This
 *	is done using Set/Way based cache maintainance instructions.  The
 *	instruction cache can still be invalidated back to the point of
 *	unification in a single instruction.
 */
ENTRY(flush_cache_all)
	mov	x12, lr
	bl	__flush_dcache_all
	mov	x0, #0
	ic	ialluis				// I+BTB cache invalidate
	ret	x12
ENDPROC(flush_cache_all)

/*
 *	flush_icache_range(start,end)
 *
 *	Ensure that the I and D caches are coherent within specified region.
 *	This is typically used when code has been written to a memory region,
 *	and will be executed.
 *
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
ENTRY(flush_icache_range)
	/* FALLTHROUGH */

/*
 *	__flush_cache_user_range(start,end)
 *
 *	Ensure that the I and D caches are coherent within specified region.
 *	This is typically used when code has been written to a memory region,
 *	and will be executed.
 *
 *	- start   - virtual start address of region
 *	- end     - virtual end address of region
 */
ENTRY(__flush_cache_user_range)
	dcache_line_size x2, x3
	sub	x3, x2, #1
	bic	x4, x0, x3
1:
USER(9f, dc	cvau, x4	)		// clean D line to PoU
	add	x4, x4, x2
	cmp	x4, x1
	b.lo	1b
	dsb	sy

	icache_line_size x2, x3
	sub	x3, x2, #1
	bic	x4, x0, x3
1:
USER(9f, ic	ivau, x4	)		// invalidate I line PoU
	add	x4, x4, x2
	cmp	x4, x1
	b.lo	1b
9:						// ignore any faulting cache operation
	dsb	sy
	isb
	ret
ENDPROC(flush_icache_range)
ENDPROC(__flush_cache_user_range)

/*
 *	__flush_dcache_area(kaddr, size)
 *
 *	Ensure that the data held in the page kaddr is written back to the
 *	page in question.
 *
 *	- kaddr   - kernel address
 *	- size    - size in question
 */
ENTRY(__flush_dcache_area)
	dcache_line_size x2, x3
	add	x1, x0, x1
	sub	x3, x2, #1
	bic	x0, x0, x3
1:	dc	civac, x0			// clean & invalidate D line / unified line
	add	x0, x0, x2
	cmp	x0, x1
	b.lo	1b
	dsb	sy
	ret
ENDPROC(__flush_dcache_area)