summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/nvhe/tlb.c
blob: 1b265713d6bede228b47a423d0f1d81a83070a5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>

#include <nvhe/mem_protect.h>

struct tlb_inv_context {
	u64		tcr;
};

static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
				  struct tlb_inv_context *cxt,
				  bool nsh)
{
	/*
	 * We have two requirements:
	 *
	 * - ensure that the page table updates are visible to all
	 *   CPUs, for which a dsb(DOMAIN-st) is what we need, DOMAIN
	 *   being either ish or nsh, depending on the invalidation
	 *   type.
	 *
	 * - complete any speculative page table walk started before
	 *   we trapped to EL2 so that we can mess with the MM
	 *   registers out of context, for which dsb(nsh) is enough
	 *
	 * The composition of these two barriers is a dsb(DOMAIN), and
	 * the 'nsh' parameter tracks the distinction between
	 * Inner-Shareable and Non-Shareable, as specified by the
	 * callers.
	 */
	if (nsh)
		dsb(nsh);
	else
		dsb(ish);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		u64 val;

		/*
		 * For CPUs that are affected by ARM 1319367, we need to
		 * avoid a host Stage-1 walk while we have the guest's
		 * VMID set in the VTTBR in order to invalidate TLBs.
		 * We're guaranteed that the S1 MMU is enabled, so we can
		 * simply set the EPD bits to avoid any further TLB fill.
		 */
		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
		write_sysreg_el1(val, SYS_TCR);
		isb();
	}

	/*
	 * __load_stage2() includes an ISB only when the AT
	 * workaround is applied. Take care of the opposite condition,
	 * ensuring that we always have an ISB, but not two ISBs back
	 * to back.
	 */
	__load_stage2(mmu, kern_hyp_va(mmu->arch));
	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
}

static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
{
	__load_host_stage2();

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		/* Ensure write of the host VMID */
		isb();
		/* Restore the host's TCR_EL1 */
		write_sysreg_el1(cxt->tcr, SYS_TCR);
	}
}

void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
			      phys_addr_t ipa, int level)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	__tlb_switch_to_guest(mmu, &cxt, false);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi_level(ipas2e1is, ipa, level);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	/*
	 * If the host is running at EL1 and we have a VPIPT I-cache,
	 * then we must perform I-cache maintenance at EL2 in order for
	 * it to have an effect on the guest. Since the guest cannot hit
	 * I-cache lines allocated with a different VMID, we don't need
	 * to worry about junk out of guest reset (we nuke the I-cache on
	 * VMID rollover), but we do need to be careful when remapping
	 * executable pages for the same guest. This can happen when KSM
	 * takes a CoW fault on an executable page, copies the page into
	 * a page that was previously mapped in the guest and then needs
	 * to invalidate the guest view of the I-cache for that page
	 * from EL1. To solve this, we invalidate the entire I-cache when
	 * unmapping a page from a guest if we have a VPIPT I-cache but
	 * the host is running at EL1. As above, we could do better if
	 * we had the VA.
	 *
	 * The moral of this story is: if you have a VPIPT I-cache, then
	 * you should be running with VHE enabled.
	 */
	if (icache_is_vpipt())
		icache_inval_all_pou();

	__tlb_switch_to_host(&cxt);
}

void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
				  phys_addr_t ipa, int level)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	__tlb_switch_to_guest(mmu, &cxt, true);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi_level(ipas2e1, ipa, level);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(nsh);
	__tlbi(vmalle1);
	dsb(nsh);
	isb();

	/*
	 * If the host is running at EL1 and we have a VPIPT I-cache,
	 * then we must perform I-cache maintenance at EL2 in order for
	 * it to have an effect on the guest. Since the guest cannot hit
	 * I-cache lines allocated with a different VMID, we don't need
	 * to worry about junk out of guest reset (we nuke the I-cache on
	 * VMID rollover), but we do need to be careful when remapping
	 * executable pages for the same guest. This can happen when KSM
	 * takes a CoW fault on an executable page, copies the page into
	 * a page that was previously mapped in the guest and then needs
	 * to invalidate the guest view of the I-cache for that page
	 * from EL1. To solve this, we invalidate the entire I-cache when
	 * unmapping a page from a guest if we have a VPIPT I-cache but
	 * the host is running at EL1. As above, we could do better if
	 * we had the VA.
	 *
	 * The moral of this story is: if you have a VPIPT I-cache, then
	 * you should be running with VHE enabled.
	 */
	if (icache_is_vpipt())
		icache_inval_all_pou();

	__tlb_switch_to_host(&cxt);
}

void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
				phys_addr_t start, unsigned long pages)
{
	struct tlb_inv_context cxt;
	unsigned long stride;

	/*
	 * Since the range of addresses may not be mapped at
	 * the same level, assume the worst case as PAGE_SIZE
	 */
	stride = PAGE_SIZE;
	start = round_down(start, stride);

	/* Switch to requested VMID */
	__tlb_switch_to_guest(mmu, &cxt, false);

	__flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, 0);

	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	/* See the comment in __kvm_tlb_flush_vmid_ipa() */
	if (icache_is_vpipt())
		icache_inval_all_pou();

	__tlb_switch_to_host(&cxt);
}

void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	__tlb_switch_to_guest(mmu, &cxt, false);

	__tlbi(vmalls12e1is);
	dsb(ish);
	isb();

	__tlb_switch_to_host(&cxt);
}

void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	__tlb_switch_to_guest(mmu, &cxt, false);

	__tlbi(vmalle1);
	asm volatile("ic iallu");
	dsb(nsh);
	isb();

	__tlb_switch_to_host(&cxt);
}

void __kvm_flush_vm_context(void)
{
	/* Same remark as in __tlb_switch_to_guest() */
	dsb(ish);
	__tlbi(alle1is);

	/*
	 * VIPT and PIPT caches are not affected by VMID, so no maintenance
	 * is necessary across a VMID rollover.
	 *
	 * VPIPT caches constrain lookup and maintenance to the active VMID,
	 * so we need to invalidate lines with a stale VMID to avoid an ABA
	 * race after multiple rollovers.
	 *
	 */
	if (icache_is_vpipt())
		asm volatile("ic ialluis");

	dsb(ish);
}