summaryrefslogtreecommitdiff
path: root/arch/arm/mach-ep93xx/timer-ep93xx.c
blob: de998830f534fc00abde80c9443e58bf35373569 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sched_clock.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <asm/mach/time.h>
#include "soc.h"

/*************************************************************************
 * Timer handling for EP93xx
 *************************************************************************
 * The ep93xx has four internal timers.  Timers 1, 2 (both 16 bit) and
 * 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate
 * an interrupt on underflow.  Timer 4 (40 bit) counts down at 983.04 kHz,
 * is free-running, and can't generate interrupts.
 *
 * The 508 kHz timers are ideal for use for the timer interrupt, as the
 * most common values of HZ divide 508 kHz nicely.  We pick the 32 bit
 * timer (timer 3) to get as long sleep intervals as possible when using
 * CONFIG_NO_HZ.
 *
 * The higher clock rate of timer 4 makes it a better choice than the
 * other timers for use as clock source and for sched_clock(), providing
 * a stable 40 bit time base.
 *************************************************************************
 */
#define EP93XX_TIMER_REG(x)		(EP93XX_TIMER_BASE + (x))
#define EP93XX_TIMER1_LOAD		EP93XX_TIMER_REG(0x00)
#define EP93XX_TIMER1_VALUE		EP93XX_TIMER_REG(0x04)
#define EP93XX_TIMER1_CONTROL		EP93XX_TIMER_REG(0x08)
#define EP93XX_TIMER123_CONTROL_ENABLE	(1 << 7)
#define EP93XX_TIMER123_CONTROL_MODE	(1 << 6)
#define EP93XX_TIMER123_CONTROL_CLKSEL	(1 << 3)
#define EP93XX_TIMER1_CLEAR		EP93XX_TIMER_REG(0x0c)
#define EP93XX_TIMER2_LOAD		EP93XX_TIMER_REG(0x20)
#define EP93XX_TIMER2_VALUE		EP93XX_TIMER_REG(0x24)
#define EP93XX_TIMER2_CONTROL		EP93XX_TIMER_REG(0x28)
#define EP93XX_TIMER2_CLEAR		EP93XX_TIMER_REG(0x2c)
#define EP93XX_TIMER4_VALUE_LOW		EP93XX_TIMER_REG(0x60)
#define EP93XX_TIMER4_VALUE_HIGH	EP93XX_TIMER_REG(0x64)
#define EP93XX_TIMER4_VALUE_HIGH_ENABLE	(1 << 8)
#define EP93XX_TIMER3_LOAD		EP93XX_TIMER_REG(0x80)
#define EP93XX_TIMER3_VALUE		EP93XX_TIMER_REG(0x84)
#define EP93XX_TIMER3_CONTROL		EP93XX_TIMER_REG(0x88)
#define EP93XX_TIMER3_CLEAR		EP93XX_TIMER_REG(0x8c)

#define EP93XX_TIMER123_RATE		508469
#define EP93XX_TIMER4_RATE		983040

static u64 notrace ep93xx_read_sched_clock(void)
{
	u64 ret;

	ret = readl(EP93XX_TIMER4_VALUE_LOW);
	ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
	return ret;
}

u64 ep93xx_clocksource_read(struct clocksource *c)
{
	u64 ret;

	ret = readl(EP93XX_TIMER4_VALUE_LOW);
	ret |= ((u64) (readl(EP93XX_TIMER4_VALUE_HIGH) & 0xff) << 32);
	return (u64) ret;
}

static int ep93xx_clkevt_set_next_event(unsigned long next,
					struct clock_event_device *evt)
{
	/* Default mode: periodic, off, 508 kHz */
	u32 tmode = EP93XX_TIMER123_CONTROL_MODE |
		    EP93XX_TIMER123_CONTROL_CLKSEL;

	/* Clear timer */
	writel(tmode, EP93XX_TIMER3_CONTROL);

	/* Set next event */
	writel(next, EP93XX_TIMER3_LOAD);
	writel(tmode | EP93XX_TIMER123_CONTROL_ENABLE,
	       EP93XX_TIMER3_CONTROL);
        return 0;
}


static int ep93xx_clkevt_shutdown(struct clock_event_device *evt)
{
	/* Disable timer */
	writel(0, EP93XX_TIMER3_CONTROL);

	return 0;
}

static struct clock_event_device ep93xx_clockevent = {
	.name			= "timer1",
	.features		= CLOCK_EVT_FEAT_ONESHOT,
	.set_state_shutdown	= ep93xx_clkevt_shutdown,
	.set_state_oneshot	= ep93xx_clkevt_shutdown,
	.tick_resume		= ep93xx_clkevt_shutdown,
	.set_next_event		= ep93xx_clkevt_set_next_event,
	.rating			= 300,
};

static irqreturn_t ep93xx_timer_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	/* Writing any value clears the timer interrupt */
	writel(1, EP93XX_TIMER3_CLEAR);

	evt->event_handler(evt);

	return IRQ_HANDLED;
}

static struct irqaction ep93xx_timer_irq = {
	.name		= "ep93xx timer",
	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
	.handler	= ep93xx_timer_interrupt,
	.dev_id		= &ep93xx_clockevent,
};

void __init ep93xx_timer_init(void)
{
	/* Enable and register clocksource and sched_clock on timer 4 */
	writel(EP93XX_TIMER4_VALUE_HIGH_ENABLE,
	       EP93XX_TIMER4_VALUE_HIGH);
	clocksource_mmio_init(NULL, "timer4",
			      EP93XX_TIMER4_RATE, 200, 40,
			      ep93xx_clocksource_read);
	sched_clock_register(ep93xx_read_sched_clock, 40,
			     EP93XX_TIMER4_RATE);

	/* Set up clockevent on timer 3 */
	setup_irq(IRQ_EP93XX_TIMER3, &ep93xx_timer_irq);
	clockevents_config_and_register(&ep93xx_clockevent,
					EP93XX_TIMER123_RATE,
					1,
					0xffffffffU);
}