summaryrefslogtreecommitdiff
path: root/arch/arm/include/asm/pgtable.h
blob: 6afd081be23f5d59f39b9a2211450db3f48c408e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 *  arch/arm/include/asm/pgtable.h
 *
 *  Copyright (C) 1995-2002 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _ASMARM_PGTABLE_H
#define _ASMARM_PGTABLE_H

#include <linux/const.h>
#include <asm-generic/4level-fixup.h>
#include <asm/proc-fns.h>

#ifndef CONFIG_MMU

#include "pgtable-nommu.h"

#else

#include <asm/memory.h>
#include <mach/vmalloc.h>
#include <asm/pgtable-hwdef.h>

/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * Note that platforms may override VMALLOC_START, but they must provide
 * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 * which may not overlap IO space.
 */
#ifndef VMALLOC_START
#define VMALLOC_OFFSET		(8*1024*1024)
#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#endif

/*
 * Hardware-wise, we have a two level page table structure, where the first
 * level has 4096 entries, and the second level has 256 entries.  Each entry
 * is one 32-bit word.  Most of the bits in the second level entry are used
 * by hardware, and there aren't any "accessed" and "dirty" bits.
 *
 * Linux on the other hand has a three level page table structure, which can
 * be wrapped to fit a two level page table structure easily - using the PGD
 * and PTE only.  However, Linux also expects one "PTE" table per page, and
 * at least a "dirty" bit.
 *
 * Therefore, we tweak the implementation slightly - we tell Linux that we
 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 * hardware pointers to the second level.)  The second level contains two
 * hardware PTE tables arranged contiguously, preceded by Linux versions
 * which contain the state information Linux needs.  We, therefore, end up
 * with 512 entries in the "PTE" level.
 *
 * This leads to the page tables having the following layout:
 *
 *    pgd             pte
 * |        |
 * +--------+
 * |        |       +------------+ +0
 * +- - - - +       | Linux pt 0 |
 * |        |       +------------+ +1024
 * +--------+ +0    | Linux pt 1 |
 * |        |-----> +------------+ +2048
 * +- - - - + +4    |  h/w pt 0  |
 * |        |-----> +------------+ +3072
 * +--------+ +8    |  h/w pt 1  |
 * |        |       +------------+ +4096
 *
 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 * PTE_xxx for definitions of bits appearing in the "h/w pt".
 *
 * PMD_xxx definitions refer to bits in the first level page table.
 *
 * The "dirty" bit is emulated by only granting hardware write permission
 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 * means that a write to a clean page will cause a permission fault, and
 * the Linux MM layer will mark the page dirty via handle_pte_fault().
 * For the hardware to notice the permission change, the TLB entry must
 * be flushed, and ptep_set_access_flags() does that for us.
 *
 * The "accessed" or "young" bit is emulated by a similar method; we only
 * allow accesses to the page if the "young" bit is set.  Accesses to the
 * page will cause a fault, and handle_pte_fault() will set the young bit
 * for us as long as the page is marked present in the corresponding Linux
 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
 * up to date.
 *
 * However, when the "young" bit is cleared, we deny access to the page
 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 * for us in this case, which means the TLB will retain the transation
 * until either the TLB entry is evicted under pressure, or a context
 * switch which changes the user space mapping occurs.
 */
#define PTRS_PER_PTE		512
#define PTRS_PER_PMD		1
#define PTRS_PER_PGD		2048

#define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
#define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))

/*
 * PMD_SHIFT determines the size of the area a second-level page table can map
 * PGDIR_SHIFT determines what a third-level page table entry can map
 */
#define PMD_SHIFT		21
#define PGDIR_SHIFT		21

#define LIBRARY_TEXT_START	0x0c000000

#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, pte_t);
extern void __pmd_error(const char *file, int line, pmd_t);
extern void __pgd_error(const char *file, int line, pgd_t);

#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
#endif /* !__ASSEMBLY__ */

#define PMD_SIZE		(1UL << PMD_SHIFT)
#define PMD_MASK		(~(PMD_SIZE-1))
#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
#define PGDIR_MASK		(~(PGDIR_SIZE-1))

/*
 * This is the lowest virtual address we can permit any user space
 * mapping to be mapped at.  This is particularly important for
 * non-high vector CPUs.
 */
#define FIRST_USER_ADDRESS	PAGE_SIZE

#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)

/*
 * section address mask and size definitions.
 */
#define SECTION_SHIFT		20
#define SECTION_SIZE		(1UL << SECTION_SHIFT)
#define SECTION_MASK		(~(SECTION_SIZE-1))

/*
 * ARMv6 supersection address mask and size definitions.
 */
#define SUPERSECTION_SHIFT	24
#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))

/*
 * "Linux" PTE definitions.
 *
 * We keep two sets of PTEs - the hardware and the linux version.
 * This allows greater flexibility in the way we map the Linux bits
 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 * bits.
 *
 * The PTE table pointer refers to the hardware entries; the "Linux"
 * entries are stored 1024 bytes below.
 */
#define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
#define L_PTE_FILE		(_AT(pteval_t, 1) << 2)	/* only when !PRESENT */
#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
#define L_PTE_USER		(_AT(pteval_t, 1) << 8)
#define L_PTE_XN		(_AT(pteval_t, 1) << 9)
#define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */

/*
 * These are the memory types, defined to be compatible with
 * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
 */
#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
#define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
#define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)

#ifndef __ASSEMBLY__

/*
 * The pgprot_* and protection_map entries will be fixed up in runtime
 * to include the cachable and bufferable bits based on memory policy,
 * as well as any architecture dependent bits like global/ASID and SMP
 * shared mapping bits.
 */
#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG

extern pgprot_t		pgprot_user;
extern pgprot_t		pgprot_kernel;

#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))

#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
#define PAGE_KERNEL_EXEC	pgprot_kernel

#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)

#define __pgprot_modify(prot,mask,bits)		\
	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))

#define pgprot_noncached(prot) \
	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)

#define pgprot_writecombine(prot) \
	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)

#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#define pgprot_dmacoherent(prot) \
	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
				     unsigned long size, pgprot_t vma_prot);
#else
#define pgprot_dmacoherent(prot) \
	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
#endif

#endif /* __ASSEMBLY__ */

/*
 * The table below defines the page protection levels that we insert into our
 * Linux page table version.  These get translated into the best that the
 * architecture can perform.  Note that on most ARM hardware:
 *  1) We cannot do execute protection
 *  2) If we could do execute protection, then read is implied
 *  3) write implies read permissions
 */
#define __P000  __PAGE_NONE
#define __P001  __PAGE_READONLY
#define __P010  __PAGE_COPY
#define __P011  __PAGE_COPY
#define __P100  __PAGE_READONLY_EXEC
#define __P101  __PAGE_READONLY_EXEC
#define __P110  __PAGE_COPY_EXEC
#define __P111  __PAGE_COPY_EXEC

#define __S000  __PAGE_NONE
#define __S001  __PAGE_READONLY
#define __S010  __PAGE_SHARED
#define __S011  __PAGE_SHARED
#define __S100  __PAGE_READONLY_EXEC
#define __S101  __PAGE_READONLY_EXEC
#define __S110  __PAGE_SHARED_EXEC
#define __S111  __PAGE_SHARED_EXEC

#ifndef __ASSEMBLY__
/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr)	(empty_zero_page)


extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

/* to find an entry in a page-table-directory */
#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)

/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
#define pgd_none(pgd)		(0)
#define pgd_bad(pgd)		(0)
#define pgd_present(pgd)	(1)
#define pgd_clear(pgdp)		do { } while (0)
#define set_pgd(pgd,pgdp)	do { } while (0)
#define set_pud(pud,pudp)	do { } while (0)


/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, addr)	((pmd_t *)(dir))

#define pmd_none(pmd)		(!pmd_val(pmd))
#define pmd_present(pmd)	(pmd_val(pmd))
#define pmd_bad(pmd)		(pmd_val(pmd) & 2)

#define copy_pmd(pmdpd,pmdps)		\
	do {				\
		pmdpd[0] = pmdps[0];	\
		pmdpd[1] = pmdps[1];	\
		flush_pmd_entry(pmdpd);	\
	} while (0)

#define pmd_clear(pmdp)			\
	do {				\
		pmdp[0] = __pmd(0);	\
		pmdp[1] = __pmd(0);	\
		clean_pmd_entry(pmdp);	\
	} while (0)

static inline pte_t *pmd_page_vaddr(pmd_t pmd)
{
	return __va(pmd_val(pmd) & PAGE_MASK);
}

#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))

/* we don't need complex calculations here as the pmd is folded into the pgd */
#define pmd_addr_end(addr,end)	(end)


#ifndef CONFIG_HIGHPTE
#define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
#define __pte_unmap(pte)	do { } while (0)
#else
#define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
#define __pte_unmap(pte)	kunmap_atomic(pte)
#endif

#define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))

#define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))

#define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
#define pte_unmap(pte)			__pte_unmap(pte)

#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))

#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)

#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)

#define pte_none(pte)		(!pte_val(pte))
#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
#define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY))
#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
#define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN))
#define pte_special(pte)	(0)

#define pte_present_user(pte) \
	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
	 (L_PTE_PRESENT | L_PTE_USER))

#if __LINUX_ARM_ARCH__ < 6
static inline void __sync_icache_dcache(pte_t pteval)
{
}
#else
extern void __sync_icache_dcache(pte_t pteval);
#endif

static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
			      pte_t *ptep, pte_t pteval)
{
	unsigned long ext = 0;

	if (addr < TASK_SIZE && pte_present_user(pteval)) {
		__sync_icache_dcache(pteval);
		ext |= PTE_EXT_NG;
	}

	set_pte_ext(ptep, pteval, ext);
}

#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }

PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY);
PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);

static inline pte_t pte_mkspecial(pte_t pte) { return pte; }

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
	return pte;
}

/*
 * Encode and decode a swap entry.  Swap entries are stored in the Linux
 * page tables as follows:
 *
 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 *   <--------------- offset ----------------------> < type -> 0 0 0
 *
 * This gives us up to 31 swap files and 64GB per swap file.  Note that
 * the offset field is always non-zero.
 */
#define __SWP_TYPE_SHIFT	3
#define __SWP_TYPE_BITS		5
#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)

#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })

#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })

/*
 * It is an error for the kernel to have more swap files than we can
 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
 * is increased beyond what we presently support.
 */
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)

/*
 * Encode and decode a file entry.  File entries are stored in the Linux
 * page tables as follows:
 *
 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 *   <----------------------- offset ------------------------> 1 0 0
 */
#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
#define pte_to_pgoff(x)		(pte_val(x) >> 3)
#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)

#define PTE_FILE_MAX_BITS	29

/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
#define kern_addr_valid(addr)	(1)

#include <asm-generic/pgtable.h>

/*
 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
 */
#define HAVE_ARCH_UNMAPPED_AREA

/*
 * remap a physical page `pfn' of size `size' with page protection `prot'
 * into virtual address `from'
 */
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
		remap_pfn_range(vma, from, pfn, size, prot)

#define pgtable_cache_init() do { } while (0)

void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
void identity_mapping_del(pgd_t *, unsigned long, unsigned long);

#endif /* !__ASSEMBLY__ */

#endif /* CONFIG_MMU */

#endif /* _ASMARM_PGTABLE_H */